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PART 11

EXTREME VALUES IN CONTINUOUS TIME

In this part of the work we shall explore extremal and related theory'
for continuous parameter stationary processes. As we shall see (in
Chapter 13) it is possible to obtain a satisfying general theory ex-
tending that for the sequence case, described in Chapter 2 of Part I,
and based on dependence conditions closely related to those used there
for sequences. In particular, a general form of Gnedenko's Theorem

will be obtained for the maximum
M{T) = sup{&(t); 0 < t < T}

where £(t) 1is a stationary stochastic process satisfying appropriate
reqgularity and dependence conditions.

Before presenting this general theory, however, we shall give a de-
tailed development for the case of stationary normal processes, for
which very many explicit extremal and related results are known. For
mean-square differentiable normal processes, it is illuminating and
profitable to approach extremal theory through a consideration of the
properties of upcrossings of a high level (which are analogous to the
exceedances used in the discrete case). The basic framework and re-
sulting extremal results are described in Chapters 6 and 7 respectively.

As a result of this limit theory it is possible to show that the
point process of upcrossings of a level takes on an increasingly Poisson
character as the level becomes higher. This and related properties are
discussed in Chapter 8, and are analogous to the corresponding results
for exceedances by stationary normal sequences, given in Chapter 4.

The location of the maximum (primarily under normality) is con-
sidered in Chapter 9, along with a derivation of asymptotic Poisson
properties for the point process in the plane given by the locations
and heights of all loecal maxima. The latter results provice asymptotic
joint distributions for the locations and heights of any given number

of the largest local maxima.
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The local behavior of a stationary normal process near a high
level upcrossing is discussed in Chapter 10, using, in particular,

a simple process (the "Slepian model process") to describe the sample
paths at such an upcrossing. As an interesting corollary it is possible
to obtain the limiting distribution for the lengths of excursions by
stationary normal processes above a high level, under appropriate con-~
ditions.

In Chapter 11 we consider the joint asymptotic behavior of the
maximum and minimum of a stationary normal process, and of maxima of
two or more dependent processes. In particular it is shown that -
short of perfect correlation between the processes - such maxima are
asymptotically independent.

While the mean square differentiable stationary normal processes
form a substantial class, there are important stationary normal pro-
cesses (such as the Ornstein-Uhlenbeck process) which do not possess
this property, Many of these have covariance functions of the form
r{t) =1 -cjt|* + of1]|* as t + 0 for some a, 0 < a < 2 (the case
a = 2 corresponds to the mean-square differentiable processes). The
extremal theory for these processes is developed in Chapter 12, using
more sophisticated methods than those of Chapter 7, for which simple
considerations involving upcrossings sufficed.

Finally, Chapter 13 contains the promised general extremal theory
(including Gnedenko's Theorem) for stationary continuous-time pro-
cesses which are not necessarily normal. This theory essentially re-
lies on the discrete parameter results of Part I, by means of the
simple device of expressing the maximum of a continuous parameter pro-
cess in say time T = n, an integer, as the maximum of n "submaxima",

over fixed intervals, viz.
M(n) = max(c1, Toar eeer cn)

where g = sup{£(t); 1-1 ¢ t ¢ i}. It should be noted (as shown in

Chapter 13) that the results for stationary normal processes given in
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Chapters 7 and 12 can be obtained from those in Chapter 13 by special-
ization. However, since most of the effort required in Chapters 7 and
12 is still needed to verify the general conditions of Chapter 13, and
the normal case is particularly important, we have felt it desirable

and helpful to first treat normal cases separately.
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CHAPTER 6

BASIC PROPERTIES OF EXTREMES AND LEVEL CROSSINGS

We turn our attention now to comtinuous parameter stationary processes.
We shall be especially concerned with stationary normal processes in
this and most of the subsequent chapters but begin with a discussion of
same basic properties which are relevant whether or not the process is
normal, and which will be useful in the discussion of extremal behaviour
in later chapters.

We shall consider a stationary process {£(t); t >0} having a con-
tinuous ("time") parameter ¢t >0. Stationarity is to be taken in the
gtrict sense, i.e. to mean that any group E(tl), cees E(tn) has the
same distribution as E(tl +T)y aaes E(tn-+t) for all 1. Equivalently
this means that the finite dimeneional distributions F (Rpoeeurx )=

tl,...,tn
P{E(tl) gxl,...,i(tn) gxn} are such that F 2 F

tl+r,...,tn+r tl"".'tn
for all choices of 1, n, and t1r o eeen b

It will be assumed throughout without comment that for each t, the
d.f. Ft(x) of E(t) 1is continuous. It will further be assumed that,
with probability one, £(t) has continuous sample functions — that is the
functions (E(t)} are a.s. continuous as functions of t >0.

Finally we shall assume that the basic underlying probability measure
space has been completed, if not already complete. This means in partic-
ular that probability-one limits of r.v.’s will themselves be r.v.’s —

a fact which will be useful below.
A principal aim in later chapters will be to discuss the behaviour

of the maximum
M(T) = sup{g(t}; 0<t<T)

(which {8 well defined and attained, since { 1is continuous) especially
when T becomes large. It is often convenient to approximate the process
E(t) by a sequence {gn(t)} of processes taking the value £(t) at

all points of the form jqn, j=0,1, 2, ..., and being linear between
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such points, where q, + 0 as n » =, In particular this is useful in

showing that M(T) is a r.v., as the following small result demonstrates.

LEMMA 6.1 With the above notation, suppose that q, + 0 and vwrite
Mn(T) - max{g(jqn); 0 5jqn <T}. Then Mn(T) + M(T) a.s8. as n + =, and

M(T) is ar.v.

PROOF Mn(T) is the maximum of a finite number of r.v.’s and hence is
a r.v. for each n. It is clear from a.s. continuity of £(t) that

Mn(T) + M(T) a.s. and hence by completeness M(T) is a r.v. o

We shall also use the notation M(I) to denote the supremum of ¢£(t)
in any given interval I - of course it may be similarly shown that M(I)

is a r.v.

Level crossings and their basic properties

In the discussion of maxima of sequences in Part I, exceedances of a
level played an important role. In the continuous case a corresponding
role is played by the upercsasings of a level for which analogous results
(such as Poisson limits) may be obtained. To discuss upcrossings, it
will be convenient to introduce — for any real u — a class Gu of all
functions f which are continuous on the positive real line, and not
identically equal to u in any subinterval. It is easy to see that the
sample paths of our stationary process £(t) are, with probability one,
members of Gu’ In fact, every interval contains at least one rational
point, and hence

®

P{E(+)4G } < I P{g(ty) =ul,

=1
where {tj} is an enumeration of the rational points. Since g(tj) has
a continuous distribution by assumption, P(g(tj) =u} 1is zero for every
j.

We shall say that the function f€Gu has a strict upcrogsing of u




at the point t, > 0 if for some ¢ > @, f(t) ¢ u in the jinterval
(tg=€, tg) and f(t) > u in (t,, t5+e). The continuity of f{ re-
quires, of course, that f(tO) = u, and the definition of G, that
£{t) <u at some points t € (to—n, to) and f(t) > u at some
points t € (to, t0+n) for each n > 0.

It will be convenient to enlarge this notion slightly to include
also some points as upcrossings where the behaviour of f is less regu-
lar. As we shall see, these further points will not appear in practice
for the processes considered in the next two chapters, but are useful in
our calculations and will often actually occur for the less regular
processes of Chapter 12. Specifically we shall say that the function
f€G, has an uperossing at t, >0 if for some €>0 and all n>0,
f(t) cu for all t in (ty=-€, t,) and f£(t) >u for some t (and
hence infinitely many ¢t) in (to, t0+ n). An example of a non-strict
upcrossing of zero at ty is provided by the function f(t) = t-t_ for

0

- _ . _ -1
tit, and f(t) = (t-ty)sin((t ty) ) for t>¢,.
The following result contains basic simple facts which we shall need

in counting upcressings.

LEMMA 6.2 Let f€G, for some fixed u. Then,
(i) if for fixed tl’ tz, 0<t1<t2, we have f(tl) <u<f(t2), then £
has an upcrossing (not necessarily strict) of u somewhere in
(tyr ),
(11) if f has an upcrossing of u at to which is not strict, it has
infinitely many upcrossings of u in (to, t0+ e), for any ¢ >0.
PROOF (i) If f£(t;) <u<f(ty) with t)<t, write
tg = sup{t > tys f(s) cu for all tlgsgt}.

Clearly £ < to <t, and to is an upcrossing point of u by f£.

(i11) 1If t, is an upcrossing point of u by £ and € >0, there is

certainly a point t2 in the interval (to, t0+c) with f(tz) >u. If




to is not a strict upcrossing there must be a point t, in (to, tz)
such that f(tl) < u. By (i) there is an upcrossing between t and
t,, so that (ii) follows, since - - 0 1is arbitrary. o

Downecrossings (strict or otherwise) may be defined by making the ob-
vious changes, and crossings as points which are either up~ or downcross-
ings. Clearly at any crossing to of u we have f(to) = u. On the
other hand there may be "u-values" (i.e. points tg where f(to) =u)
which are not crossings - such as points where f is tangential to u
or points to such that £f(t) -u is both positive and negative in
every right and left neighbourhood of t0<—as for the function
u+ (t-tg)sin((t- to)'l) .

The above discussion applies to each sample function of our process
£(t) satisfying the general conditions stated since, as noted, the sam-
ple functions belong to Gu with probability one. Write, now, Nu(I)
to denote the number of upcrossings of the level u by £(t) in a
bounded interval I, and N, (B = Nu((O,t]). We shall also sometimes
write N(t} for Nu(t) when no confusion can arise.

In a similar way to that used for maxima, it is convenient to use the

S

"piecewise linear" approximating processes frn(t)} to show that Nu(I)

is a r.v. and, indeed, in subsequent calculations, as for example in cbtain-

ing E(NU(I)). This will be seen in the following lemma, where it will

be convenient to introduce the notation

(6.1) I (w = PL£(0) <uc<ilq) /g, q>0.

LEMMA 6.3 Let I be a fixed, bounded interval. With the above general

assumptions concerning the stationary process ¢, let {qn} be anv se-
quence such that 9, +0 and let Nn denote the number of points jqn,
j=1, 2, ... such that both (j —l)qn and jqn belong to I, and
E({i-1l)q ) <u<g(jq ). Then




(ii) N_ *N (I) a.s. as n*™ and hence Nu(I) is a (possibly
infinite valued) r.v.,

(iii) E(Nn) »E‘.(Nu(I)) and hence E(Nu(l)) = cl;xg J (u).

PROOF (i) If for some Jj, &£((3 —l)qn) <u<g(iq,) it follows from
Lemma 6.2 (i), that 5 has an upcrossing aoetween (j-1l)g_ and jg

n
so that (i) follows at once.

(ii) Since the distribution of i(jqn) is continuous and the set
{kqn; k=0, 1, 2, ...,3 n=1, 2, ...} 1is countable, we see that
P{E(kqn) =u for any k=0, 1, 2, ...,i n=1, 2, ...} =0, and hence we
may assume that E(kqn) +u for any k and n. We may likewise assume
that £ does not take the value u at either endpoint 2f I and hence
that no upcrossings occur at the endpoints. Now, if for an integer m,
we have Nu(I) >m, we may choose m distinct upcrossings tl’ . eay tm of
u by £(t) 1in the interior of I which may, by choice of € >0, be
surrounded by disjoint subintervals (ti- e, b+ £}, i=1, 2, ..., m, Of
I, such that ¢g£(t) <u in (ti-r,, ti) and £(1) >u for some
TE (ti’ t; +€). By continuity, 1 is contained in an interval —which
may be taken as a subinterval of I-in which £{t) >u. For all suffi-
ciently large n this interval must contain a point kqn.

Thus there are points SanE ('ci -«, ti) , kan (ti’ ti +¢) such that

-qn) <u< E(kqn) . For some j with £<3j<k we must thus have
E({]~- l)qn) <u< E(jqn) . Since eventually each interval (t:i e, t;+ €)
contains such a point jqn we conclude that Nn3m when n is suffi-
ciently large, from which it follows at once that 1lim inf anNu(I)

n+e
(finite or not). Since by (i), 1lim sup N_<N (I) we see that lim N =
n-»w n- 4 n-+ow
Nu(I) as required. Finally it is easily seen that Nn is a r.v. for
each n (Nn igs a finite sum of r.v.’s Xk=l if E((k~ l)qn) <u<£(kqn),
and zero otherwise) so that, by completeness, its a.s. limit Nu(I) is

also a r.v., though possibly taking infinite values.




(iii) Since HnA»Nu(I) a.s., Fatou’s T.zmua shows that lim infE(Nn) 2

ne-=

E(Nu(I)). If E(NU(I)T'f& this shows at once that E(Nn)'-E(Nu(I)). But
the sarm< result holds, by dominated convergence, if E(HU(I)) < ¥, since
N <N,(I) and N -N (I) a.s.
Finally, if I = (0,1), then I contains -, ~ q;l points jg, so
that, using stationarity,
E(Nn) = (vn-l) PLE(0) “u< Tlq ) ~J n(u).

Hence Jq (u) ~» E(Nu(l)) from which the final conclusion of (i1i{i; fcl-
n
lows since the sequence {qny is arbitrary.

n

COROLLARY 6.4 If E(Nu(I))< «, or equivalently if liminfJ_{(u} < =
n-ex n
for some sequence g, - J, then the upcrossings of u are a.s. strict.

PROQF If E(Nu(I)) - « then Nu(I) < = a.,s., and the assertion follows

from (ii) of Lemma 6.2. o

In passing, we shall derive two small results concerning the maximum
M(T) and the nature of solutions to the equation f(t) = u, which rely

only on the assumption that E(Nu(l)) is a continuous function of u.

THEOREM 6.5 Suppose that E(Nu(l)) is continuous at the point u and,
as usual that P(£(t) =u) = 0 so that ¢(-) €Gu with probability one.

Then

(i) if te (0,1) and £(t) = u, then with probability one ¢t 1is either

an upcrossing or a downcrossing point,
(ii)the distribution of M{1l) is continuous at u, i.e. P{M{(l)=u}=0.

PROOF (i) If £(t) = u, but t is neither an upcrossing nor a down-
crossing point it is either a tangency from below or above, i.e. for
some €>0, £(t) <u (>u) for all t € (to -€, to +¢) or else there
are infinitely many upcrossings in (to-c, to), (and this is precluded
by the finiteness of E(Nu(l))). Further for each fixed u the proba-

bility of tangencies of u from below is zero. To see this, let Bu
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be the number of such tangencies of the level u in (0,1), and suppose
Nu +Bu >m, so that there are at least m points tl, ceen Yy which are
either u-upcrossings or tangencies from below. Since f{.) EGu with

probability one, there is at least one upcrossing of the level u-1/n

just to the left of any tj’ for all sufficiently large n. This implies

N_+B_<1lim inf N
u u-

n-+m

u-1/n’

and applying Fatou's Lemma,

E(N, (1)) +E(B (1)) gli:*inf E(Nu-l/n(l)) = E(N, (1))
if E(N (1)) is continuocus. Since B >0, we conclude that B, = 0 (with

probability one). A similar argument excludes tangencies from above, and

we have proved that all u-values are either up- or downcrossings.
{ii) Since
P/M(1l) =u} < P{£(0) =u} +P{g(1) =u} +P{B, >1}

the result follows as in th:e proof of part (i) from P{Bu =0} =1. o

Crossings by normal processes

Up to this point we have been considering a quite general stationary
process {f£(t); t>0}. We specialize now to the case of a (stationary)
normal or Gaussian process, by which we mean that the joint distribution
of g(tl), ceny g(tn) is multivariate normal for each choice of n =1,
2, ... and ty, tyr vea t,- It will be assumed without comment that
£(t) has been standardized to have zero mean and unit variance. The
covariance function r(t) will then be equal to E(£(t)E(t+1)).
Obviously rit) 1is an even function of 1, with r(0) =E(€2(t)) =1.
Thus if r is differentiable at 1 = 0, its derivative must be zero
there. It is of particular interest to us whether r has two derivatives
at 1 = 0. If r"(0) does exist (finite), it must be negative and we
write Ay = -r"(0). The quaﬁfity Ay is the second spectral moment, so

called since we have Az = fAzdF(A), where F()) 1is the spectral d.f.,

-0




i.e. ri(1) = IeiAIdF(A). If r is rot twice differentiable at zero
© -t
then IXZdF(X) = ®, i.e. )2 = =, When XZ < = we have the expansion
- 2 2 .
(6.2) r{t) =1 -~ A21 /2 + ol(1%) as 1 + 0.
Furthermore, it may be shown that Az = -r"(0) < = 1if and only if % (t)

is differentiable in quadratic mean, i.e. if and only if there is a pro-
1

cess {%'(t)} such that h ~(£{t+h) -£(t)) » £'(t) in quadratic mean
as h - 0, and that then
E(g'(t)) =0, Var(g'(t)) = -r"(0),

£(t), &§'(t) being jointly normal and independent for each I. Further-

more
Cov(E'(t), £€'(t+ 1)) = -r"(1).

For future se we introduce also

oo o

\g = /AF(O) = r(0) =1 and A, =/ zaroy,

where also A4 = r(4)(0), when finite. An account of these and related
properties may be found in Cram&r and Leadbetter (1967), Chapter 9.
To apply the general results concerning upcrossings to the normal

case we require that £(t) should have a.s. continuous sample paths.

It is known (cf. Cramér and Leadbetter (1967)), that if
(6.3) 1 -r(1) < c/ilog|1]|® for some C > 0, a > 1, for [t <1,

it is possible to define the process £(t) as a continuous process.
This is a very weak condition which will always hold under assumptions
to be used here and subsequently — for example it is certainly guaranteed
if r is differentiable at the origin, or even if 1-r(1) <cC|t|® for
some a > 0, C > 0,

In the remainder of this and in the next chapters we shall consider a
stationary normal process £(t), standardized as above, and such that
Az <®, To evaluate the mean number of upcrossings of u per unit time

we need to evaluate the limit of Jq(u) defined by (6.1) as q-+0.
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This is obtained in the following lemma which is a more general result
than we need at present, but which will be useful later also.

Let ¢ and ¢ denote the standard normal density and distribution

functions.

LEMMA 6.6 Let {£{t)} be a (standardized) stationary normal process
e—u2/2

35
~N

with Az < o« and write u (= u(u)) = -=

= . Let g +0 and u

either be fixed or tend to infinity as ¢ + 0 in such a way that ug~+0.

Then
g = qa IP(£(0) <u<E(@l~u as q+o.

PROOF By rewriting the event {£(0) <u<g(q)} as {[|£(0) + £(q) - 2u]

< E(q) - £(0)}, i.e. as {[:1 ~u < % cz} where: Ly = (E(0) + g£(g)/2,

g, = (£(q) - £(0))/q, are uncorrelated, and hence indevendent, with

respective variances oi = (L+r{q))/2, og = 2(1'-r(q))/q2, we obtain

u-qu(u) (uqcz)-1 (AL) P{|z, -u| <%¥}dy

¢
y=0 92

]

-1 = u+qy/2
(ugoy0,) "t s s ¢(—’5—) ¢(-x-\dxdy

y=0 x=u-qy/2 % GZ/
o -y2/202 [ %2 1 ru+ agxy/2
(6.4) = g W20 2 g (WrRw/2) iy
y=0 05 2olu/7? =-1 %

Now, by simple calculation, the second factor in the integrand may be

written as

o 1 2 2.2 2y
27 exp{- 2ya-0d) -2y gdxyg,,
201VT; x=-1 201 201 801

which by bounded convergence (o;>1, 1- 0§= A2q2/44-o(q2), 02-’/T;)

tends to 1. It is also immediate that the integrand of (6.4) is domi-
—~ol

nated by the integrable function Aye cy (for some constants A, ¢ >0)

so that an application of dominated convergence gives

- o o2, 2
m " (w) = 7 X eV /2924y - 1,
q+0 q c 0
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The following result — due in its original form to §.Q. Rice (1945) -

is now an immediate corollary of this lemma.

THEOREM 6.7 (Rice’s Formula) If {£(t)} 1is a (standardized) stationary
normal process with finite second spectral moment )2(= -r"(0)) then
the mean number of upcrossings of any fixed level u per unit time is

finite and given by

(6.5) E(Nu(l)) = 5 e
(dence also all upcrossings are strict.)

PROOF This follows from the case u fixed, in the above lemma, togeth~

er with (iii) of Lemma 6.3. o

The above discussion has been in terms of upcrossings. Clearly, simi-
lar results hold for downcrossings. Inparticular, the mean number of
downcrossings is also given by (6.5).

In discussing the maximum of a stationary normal process £(t) we
shall find it useful to compare ¢ with a very simple normal process
£*(t) whose maximum is easily calculated using properties of its up-
corssings. Specifically let n, & be independent standard normal r.v.'s

and define
(6.6) £*(t) = ncoswt+rsinwt

where w 1is a fixed positive constant.
It is clear that £%(t) is normal and that £%(t], ..., £ (t)) are
jointly normal for any choice of ti. (This follows most simply from the

n
observation that I ciE'(ti) is normal for any choice of ty and ci.)
1

Thus E'(t) is a normal process and E(E'(t)) = 0, Its covariance func-

tion is calculated at once to be

(6.7) r(t) =E{(ncoswt+rsinwt) (ncosw(t+ 1) +rsinw(t+ 1))
=coswt cosw (t+17) +8inwt sin w(t + 1)
=CO8 W Te.

Thus £%(t) 1is weakly stationary and hence strictly so, being normal.

Write now n = Acos$ and ¢ = Asin¢, with 0< ¢ < 27, Then
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(6.8) T (k) = Acos (. t=12).
The Jacobian %%%L%% = A, and it follows simply that A, 2 have joint
density
1 . -x%/2
fA’;(x,y)z-z—"xe , x«0,0’_y(zTYI

showing that A, 9 are independent, A having the Rayleigh distribution
xe'xz/z(x 20) and ¢ being uniform over ({0,27). The sample paths of
£% are thus cosine functions with angular frequency w, and having in-
dependent random amplitude A and phase ¢.

The distribution of the maximum M*(T) for this process can be ob-
tained geometrically. However, it is more instructive (and simpler) to
use properties of upcrossings. It is clear that XZ = wz for this pro-
cess and, writing N = N;(T) for the number of upcrossings of u in

(0,T), we have

2
(6.9) E(M) = 3% &™¥ /2

and
PIM*(T) >u} = P{£*(0) > u} + P{E*(0) < u, N > 1}.

Now take wT < w. Then if £*(0) > u > 0, the first upcrossing of u occurs
after t = 71/w (see diagram), and hence {N>1, £*(0) > u} is empty, so
that

P{*(0) < u, N2 1} = P{N > 1}.

A cos(wt=9)

/

w
\______wp_____/

Tw

il
s

Thus, since N =0 or 1,
(6.10) P{M*(T) >u} =1 - 6¢(u) + P{N>1} =1 - &(u) + E(N)
wT -u2/2
=1-0@) +3e ,

or equivalently,




-12-
~ T -u?/2
(6.11) P-M*(T) _u = i(u) - 5= e .
As a matter of interest and for later nae, 00 el lower tor iy oo

that for fixed h, 0 : ,

P M (h) -u ('2)1/2
—_—— as u -

(6.12) TR ey 5=

7=
(since 1-%{(u) - :(u)/u and 5T .2) . This limit in fact holds urder
much more general conditiens, as we shall sec.

As noted above we will want in the next chapter to compare a general

stationary normal process with this special process. This compariscn

will be made by an applicaticn of the following easy conseruence of Lerma

3.3,

LEMMA 6.8 (Slepian) Let ‘»l(t) © and ", (t): be normal nrocesses (pos-
sessing continuous sample functions but not necessarily being stationary).
Suppose that these are standardized so that E(7 () =E(5,(¢)) =0,
E(-’.i(t)) =E(£§(t)) =1, and write :*l(t, s) and oz(t, s) for their co-
variance functions. Suppose that for some 4 -0 we have cl(t, s)

(t, s) when 0-¢t, s~_“.. Then the respective maxima Ml(t) and Mz(t)

."2
satisfy
. . pl .
P{MI(T) cut ZPIM,(T) - uf
when 0T 4.
. (1) (2) . .
PROOF Define Mn and Mq relative to -’l(t), »z(t) as n Lemma
-n
6.1 where cn=2 . Then, with probability one .'1;” * M, (1), so that

(1) (1)

{M "7 cu} + {M](T) cu} and hence PiM "7 2 ut *P{M)(T) cul as n»w.
2
Similarly P{M’(1 )_<_u} +P{My(T) <ul. But it is clear from (3.6) of Lemma
(2
3.2 that piM? cub 2 piM{Y S 4l 5o that the desired result follows. a

marked crossings

The material in the remainder of this chapter will not be used until
Chapter 8 and in subsequent chapters. The reader who wishes to do SO may

proceed directly to Chapter 7, and return to this section when needed.
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We shall consider situations where we not only register the occur-
rence of an upcrossing, but also the value of some other random variable
connected with the upcrossing. We may, e.g. be interested in the deriva-
tive g‘(ti) at upcrossing points t, of u by “(*) or the value
t(s,) at downcrossing points s of zero by <<'(+), i.e. at points
where ¢&(t) has a local maximum. We shall refer to these as
oross’wis, and for example regard {'(ti) and i(si) as markes attached
to the crossings at ti and S;- We shall here develop some methods for
dealing with such marks, along similar lines to those leading to Rice's
formula (although with some increase in complexity).

Let {(-(t); €205 and {n(t); t>0r be jointly stationary processes
with continuous sample paths. Denote by ty the upcrossings of u by
t{t), and let, for any interval A, Nu(I; A) be the number of ti in
I such that n(t ) € A, and write U (t; A) = Nu((o, th; A). NU(I).
Nu(t) will have the same meaning as before, e.q. Nu(I) =
Nu(I; (=», w)). Further define

J _{u; A) =

q P{c(0) cu<z(qg), n(0) €A},

el

LEMMA 6.9 Suppose E(Nu(O,l)) < «, let I be a bounded interval, let
I, * 0 as n » =, and let Nn(A) be the number of points jqn €1

(with (3 —l)qn € I) such tnat

¢y =gy < u < cliqy) and n((j-1liq)) € A.

Then

(1) if A 1is an open interval,
liﬁ*iéan(A) 2 N, I Ay, a.s.

(ii) if, for every v,

(6.13) Plr(t) =u, ' (t) =v for some tE€I} =0

then, for any interval A,
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lig:&uuNn(A) < Nu(I; A), a.s.,

and

Nu(I; A) = lim Nn(A), a.s.,

n»m
(iii) if A 1is an open interval,

E(Nu(I; A)) < lim infE(Nn(A))

N

and, if (6.13) nolds,
E(Nn(A))~*E(Nu(I; A}))
and

E(N (I; A)) = lim J _(u; A).
u g+o G

PROOF (i) Suppose that N,(I; A) >m and that 7(t) has upcrossings
of u at tie e b in the interior of I, with n(ti) €A, 1=1,
..+, M. (Be the continuity of the distribution of {(t) no upcrossings
occur at the endpoints of I.) Since n(t) is continuous we can sur-
round the ti's by disjoint subintervals (ti -€, ti +¢) of I in
which n(t) € A. It then follows as in the proof of Lemma 6.3 (ii) that

lim inf N_(A) > m.

n-+o
(ii) First assume Nu(I; A) = m<~, and let tl, ceen o be as in (i).
If (a,b) is the interior of A, (6.13) precludes n(ti) = a or b, so

that ”(ti) € (a,b), and we may therefore take disjoint intervals (ti -€,
t, +¢) in which n(t) € (a,b). Write Jn for the set of 3j’s such

that (j —l)qn and jqn both belong to (ti ety +e) for some i,
and J; for the set of j’s such that (j -l)qn and jqn belong to

I but j ¢ Jn. Clearly ti is the only upcrossing of u by r(t) for

t € (ti -€, ti +¢), and therefore by Lemma 6.2 (i),

(6.14) 1lim sup I . < m,
nee  jeg o J

where




P

1 if 7 ((]~ l)qn)( u < ’(jqn) and ({3 —l)qn) € A

"3
0 otherwise.

Furthermore, if

lim sup 7= v, > 0,
+o j€J% I
n ]EJn
then for n arbitrarily large there are jn € J; with vy = 1 and
n

hence a sequence of integers {n} such that jﬁqﬁ - 1, with
T 4 (¢;-¢, ty+e), =1, ..., m and X5a = 1. From the continuity

of n(t) it follows that n{1) € [a, b], and, since (6.13) precludes

r{(t) = a or b, we must have n(-) € (a, b). Hence r(t) € (a, b) < A
for t € (1 -¢', 1 +¢€') for some ¢' » 0, which can be taken small
enough to make ti § (t~-~¢', 1+¢"), i =1, ..., m. Further, for n

large enough, both (j;-—l)q; and j;q; telong to (t=-¢', = +¢') and
thus, by Lemma 6.2 (i), 7(t) has a u-upcrossing in (7 -:¢"', 1 +¢")

which contradicts Nu(I; A) = m. This shows that

lim sup I Xj =0,
+0 5 »
n JEJn
which together with (6.14) proves that lim sup Nn(A) < NU(I; A), a.s.
n+o

Since furthermore, (6.13) implies that Nu(I; A) = Nu(I;(a,b)), part (i)

gives that

lim inf W (A) > lim inf N _((a,b)) > N (I;(a,b)) = N (I; A).

n-+o n-+o

Hence Nu(A) + NU(I; A) = m < > a,s, as asserted. If Nu(I; A) , the

n
8

conclusion follows from part (i) with (a,b) replacing A, since

Nu(I; A) = Nu(I,(a,b)) by (6.13).

(11i) The first conclusion follows at once form Fatou’s Lemma and part

(i), while it follows from part (ii) that E(Nu(I; A)) = linlE(Nn(A)),
n-+o

since Nn(A) < Nu(I) and E(Nu(I)) < o by assumption. Further, if

1= (0,1), there are approximately q;l points jqn € I, so that

-1 _ .
R
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Hence the last assertion of (iii) follows since the sequence Q- is

arbitrary. o

we shall now evaluate the limit of Jq(u; A) for the case when 7 (t)
and n(t) are jointly normal processes., For convenience we assume that
n{t) 1is standardized, i.e. it has mean zero and variance one., As was
noted earlier, if ¢(t) is quadratic mean differentiable then E(z'(t))
=0, X, = var(z'(t)) <=, and ¢(t), ¢'(t) are independent for eaca t
and normal, and hence they have the joint density function

‘1/2 -1/2).

p(u, z) = ¢(u)A2 ¢ (21,

Further it can be shown that the three processes ({z{t)}, {z'(t)}, and
{n(t)} are jointly normal, and that the crosscovariances and covari-

ances can be obtained as limits, e.g.

Cov(z® (£), n(t+ 1)) = lim E(h"Y(c(t+h) —c(t)}, n(t+1)).
h-+Q

Conditional distributions can also be defined, using ratios of density

functions when they exist, e.g. for a measurable set A, we define

it

Pin(oyen|z(o) u, £*{0) = 2z}

= [ P [ (uler)/P(ulz) le
geaZ8 (0) 42" (034 (0)

where PL(0),2' (0} ,n(0) is the density function of £(0), ¢'(0), n(0).

In the sequel, conditional probabilities will always be understood as

defined in this way.

LEMMA 6.10 Let {¢(t)} be a zero mean normal process, jointly normal

with the process {n(t)}, and such that ¢(0), £'(0), n(0) have a non-

singular distribution. Assume further that {n(t)} has continuous

sample paths and that Z(t) is differentiable in quadratic mean with

A, =

2 Var(;'(t)) (< =). Then, for any measurable set A and any u,

8

qro Jalvr M = S 2Zpla,2)Pn(0) €A ¢ (0) =u, ¢'(0) =z)da.

PROOF Write n = n(0), and as in the proof of Lemma 6.6 introduce the

independent normal r.v.’s &y = (2(0) +g(q))/2, &, = (2(qQ) - 5(0))/a with




variances ‘f = (r(0) +r(g))/2, '5 = 2ir(C) - rim /qz, and note thnat
1 47
Jq(u; A) = q "P{ ;| -Uu 5o 0 €A
o1 % utgz/2 oy
(q7y7,) L S :/;ﬁ\:<{£\P TE€A Ty =x, ,=z-dxdz
z=0 x=u-qz/2 \“l/ \JZ/

T z.(z\ Y 1 (utxqz/2)\,.

(6.15) = 7 =i ) ; F("i_ Pir€h " =u+xqz/2, ~,7z dxdz
z=0"2 \ 2/x==1""1 ’1 /

To obtain the limit of the conditional normal probability
Pin €AlC1 =V, L,=21r as g - 0 (and v - u) we note that since < (t)-

and {n(t)} are jointly normal processes, the conditional distribution
of n = n(0) given iy = (2(0) +zc(q))/2=v, Ly = (3(q} -5(0))/q = z,
is also normal with mean

-2 - -
mq(v,z) = E(r) + vy COv(,,;l) + z 5

and variance

B _ -2 2, .y _ =2 2, .
Vq = Var (n) 9 Cov (ﬂ,,l) 3," Cov (”"2)‘

Since Ly z(0), Ly * '(0) in quadratic mean as q » 0 it follows

that Cov(n,;l) + Cov(n(0),5(0)), Covi(n,z,) = Cov(n(0),7'(0)) as g + 0.

Since furthermore, o% + r(0) =var(-(0)), wg - ‘2 =var(7'(0)), and -(0),
»*{0), n(0) are non-singular by assumption we have Vo = lim v_ > 0.
q-0
Thus, with my = lim mq(u~+xqz/2,z), dominated convergence gives that
q>0

for all x and z,

1 (Y7 g
P{n€A!s, =u+xqz/2, r,=2} = [ if—3d
ol 2 A VY \ T/y
q g
y-m
1o =)y
A‘VO vVO
= P{n(0) €Al7(0) =u, ~'(0) =z}

as q » 0. Again by dominated convergence it follows that

3 (u; A) > f —"'-¢(i) L, (- Jeinorenlcio) =u,
9 2=0 /7, ./ /T \/E(oy

7Y0) = zitdz

which is the conclusion of the lemma.
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Local maxima

As an application of the marked crossings theoary we end this cnapter with
some comments concerning lcrz2! maszimz, To avoid technicalities we assume
that the stationary normal process <I(t): has sample functions whicn
are, with probability one, everywhere continuously differentiakle. Suf-
ficient conditions for this can be found in Cramér and Leadbetter (1967),
and they require slightly more than finiteness cf the second spectral
moment xz; cf. the condition (6.3, for sarnie finct.o o Zontinaley.
Clearly then £(t) has a local maximum at t,. 1f and <nly & 7' (¢t)

has a downcrossing of zero at t and a number of resclts for local

OI
maxima can therefore trivially be obtained from correspond:ng results

for downcrossings.

In particular, to ensure that 7{t) has only ‘initely many local

R . .. , , . 4,
maxima in a finite time, we need the assumption =, = r oy , Where
X4 is the fourth spectral moment j:. A4 ar (.

If A4 <o, then ¢(t) has also a second derivative <¢"{t), defined
in quadratic mean, and £(t), £'(t), £"(t) are jointly normal with

mean zero and the covariance matrix

0 2
0 Ay 01,
-)2 0 Xq
where we usually assume \0 = 1. Further Ff(t), ~'{t}, ""(t) have a

non-singular distribution orovided ¢ is not of the form £§/*+) =

= A cos{wt~¢). (In fact, the determinant of the covariance matrix is

Aygha =22 = 4, 00ar0) Y ar) - (12dar00) 21, wnich is zero only if

F 1is concentrated at two symmetric points.) If 14 <+~ we also have

the analogue of (6.2),

Cov(E'(t), £'(t+1)) = ~r"(1) = )2"% x412-+o(r2) as - -+ 0,
and, normalizing to variance one, we obtain
X
(6.16) covast2er ey, Y% (k) =1 -3 420607 as < -o0.
2 2 2 x2
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We will temporarily use the notatiocn N'(T) for the number of local

maxima of Z(t), 0<t<T. From Rice’s formula (6.35) and (6.16) we cbtain

that the expected number cof Iccal maxira in 0,7 1is
Aan1/2
=X (4
E(N'(T)) ‘F(T ,
2
In Chapter 9 we shall study heights and locations of " :% ‘<220 mari-

ma. Write N&(T) for the number of local maxima of “(t), 0<t~-T,
whose height exceeds wu, i.e. with the previous notation. if <-{(t) has
local maxima at the time points {si}, then N&(T) is the number of

sy € (0,T) such that E(si) > ou.

LEMMA 6.11 If f{&(t)} is stationary normal, with continuously wiffer-
entiable sample paths, and with a guadratic mean second derivative - "it]
with Var(g"(t)) = A4 < = such that £(t), £'(t), 5"(t) have a non-

singular distribution, then

» 0

E(N(T)) =T I lz1p(x,0,2z) dzdx,

X=u z=-w

where pl(x,y,z) 1is the joint density of %(t), <'(t), £"(t).
PROOF We shall use Lemmas 6.9 and 6.10, identifying =5(t) =-"'(t) and
r(t) = 5(t). By assumption, “-f(t):- and '-(t)- satisfy the hyrotheses
of Lemma 6,10, with Var(-'(t)) = 14, s that  ~r any open interval &,
(6.17) lim J_(0; A) = [ zf oy (0,2)y P -1%;€h ~(C; =0, ~'(0) =2 dz=

gro 9@ o0 (M), ()

0

[ 1zlp(0,2)P{#(0) €A 2" (0) =0, 2"(0) =2 dz,

z:—m
where p(0,z) is the density of £'(0), %£"(0). By Theorems 6.5 and
6.7, all t such that g(t) = £'(t) = 0, are either upcrossing or
downcrossing points. Lemma 6.9 (iii) implies that, writing NO(T; v()

for the number of maxima ir (0,T) with height in VC = (v=-c, v+),

P{L'(t) =0, £(t) =v for some t€ (0,T)} < 2B (N (T3 V)

2Tlim inf J (0; V),
q‘o S| '
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Since E(Nn(Vr)) ~ JG(O; Vo). By (.17, che rizht nand side can be made

arbitrarily small. Thus (t), 7 (t) satisfy condition (6.13) and py

Lemma 6.9(iii) and stationaricy

E(NO(T;(u,w))) = T E(No(l;(u,“l))

=T 1im J _(0; {u,=)).
g~0 1
Inserting
P{C(0) € (u,=)[5'(0) =0, £"(0) =z; = r p(x,0,2)/p(0,z) dx
. u

into (6.17), the lemma follows.

By inserting the normal density

p(x,0,2) = (2n)'3/2(A2m'1/2exp(—u4x2+ 2 ,xz + 2%) /2p)

where D = X4 -Xg. we obtain after some calculation

A\ 1/2
] =T J//a (i _ 172\
(6.18) E(NJ(T) = oL {\*2) (1 = ¢, /D) ) )+

+ m 2 g :»(u.xz/nl/Z)}
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CHAPTER 7

EXTREMAL THEORY OF MEA«~ SQUARE DIFFERENTIABLL NoMAL PRUCESSES

In this chapter, the extremal theory of stationary normal processes

will be developed — giving analogyous results to those of Chapter 3. We

shall assume throughout this chapter that ~7{(t,; ¢ -0 1s a station-
ary, normal process with E(.(t)) =0, E({z(t)) =1, E{ () (t+-)) =r(~)
where the svectral moment ., =r"(0) exists finite. Equivalently this

2

requires that the mean number of upcrossings of any level per tire unit
is finite (Theorem 6.7), and also eqguivalently that the covariance func-

tion has the following representation,
(7.1)  x(z) =1-3,1/2 + 0(x%) as < - 0.

Less regular cases where )2 = =~ will be considered in Chapter 12.

As for normal sequences, the double exponential limit
P{aT(M(T) -bgp) Zx: > exp(-evx) as T » =

(for M(T) = sup{f(t); 0<t<T) as in Chapter 6) will be derived under

the weak condition
(7.2) r(t) logt -+ 0 as t + o,

This is the continuocus time analogue of (3.1), and it will be used to

derive a version of Lemma 3.1, before starting the muin development.

Still weaker conditions corresponding to (3.12) will be obtained at the

end of this chapter. In the following lemma we shall consider a level

u which increases with the time period T 1in such a way that

E(NU(T)) remains congtant, i.e. Tu remains constant, where u =

E(N (1)) = 521/2e707/2,
We shall also consider points {kg; k=1,2...} where gq depends

on u (or equivalently on T) and g - 0 as u {(or T) + =, The

statement that "a property holds provided ¥ = y(u) + 0 sufficiently

slowly"” is to be taken to have the obvious meaning that there exists

some vo(u) + 0 for which the property holds, and it holds for any
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r(u)  such that <{u) - 0 but = {u - «tu as u - . The following

is the promised continuous analogue of Lemma 3.1.

LEMMA 7.1 Let ¢ > 0 be given.
(i) If (7.2) holds, then supiir{t));it! >e} = & <1.

(ii) Suppose that (7.1) and (7.2) both hold. Let T ~ t/u, where =

_..2
is fixed and y = E(Nu(l)) = jé-A;/ze u /2, so that u ~ (2 locT)l/Z

as T » » (as is easily checked). If qu= ¢(u)u+ 0 sufficiently slowly

as u —~ * then

. 2
L rkg e /R irG@ D Ly a7 s,
4 ¢ 2kqsT

PROOF (i) As in the discrete case (cf. remarks preceding Lemma 3.1)
if r(t) =1 for any t > 0, then r(t) =1 for arbitrarily large
values of t which contradicts (7.2). Hence |{ri(t)| < 1 for

[t] > ¢, and since r(t) is continuous and tends to zero as t -+ «~,
we must have |r(t)| bounded away from 1 in |t{ > ¢, and (i)
follows.

(i1} As in the discrete case, choose a constant ¢ such that

0 < b < i ;2. Letting K be a generic constant,

2 B+l _ 2
by 5 . Ir(kq) |e u/ {1 + Jrikq) ]} < Z—i- R /(1 +8)
9 eckqger
_ZPE 270
2 H
q
LK gB41l-2/(1+6)
)
q
< K (logm) pBt1-2/(145)
£33
g“u
since u2~2109T, as noted. If Yy is chosen so that 0<y<-11—;-—§—-8,
the last expression is dominated by K(c;\.\)-z'i‘—Y which tends to zero
2
provided uq + 0 more slowly than 'I‘.Y/2 (= Ke~ "V /4). Hence this sum

tends to zero,
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2 2 . , ‘
) _ o"U Y ‘r(kg) /(1 + r(ky) )

—u2/(l + |r(kq)

By writing e e see
that the remaining sum does not exceed
2 2
ge'u I ir(kg) et IFlkal
T¢<kq:T
Again as in the discrete case, if ¢{(t) = sup ir(s) logs, then

s>t
§(t) - 6 as t - = and for s > t - 1 we have ,r(s) £ é(t)/logs<
2

5 i z :
f(t)/log t. Thus for kg - T , u“r(kg) ZKlogT #(T")/log T = L&T7)

o]

which tends to zero, uniformly in k. Hence the exponential term
wlrikq) | . N . . o
e ' is certainly bounded in (k,u). It is thus sufficient to

SNOW tnat

But this dces not exceed

X172 T 50 /109 T8 < K 6 (1°) /(g%ud)

9 g9

which again tends to zero provided qu ~ 0 sufficiently slcwly (i.e.

slower than (1% /2. o

Having proved this technical lemma, we now proceed to the main deri-
vation of the extremal results under the assumption that r"(0) exists

(i.e. Az <w) and (7.2) holds. The condition ), <» guarantees that

2

the point process of upcrossings of a level u will have a finite in-
tensity. The case AZ =» is also of interest, and, as noted, will be
treated in Chapter 12, but requires the use of more complex methods
(such as an extended definition of upcrossings).

Our basic technique here is to divide the interval (0,7) (where T
becomes large) into n pieces of fixed length h (n=[T/h)). Then M(T)
will clearly be close to M(nh) wnhich is the maximum of n r.v.'s
Cj = M((j~-1)h,3h), j=1,2,..., n, (the {Lj} forming a stationary se-
quence) . Thus we might expect that the methods used for sequences would
apply here and this is the case (although we shall organize our arqu-

ments slightly differently to better suit the present purposes).
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It is therefore not surprising that the tail of the distribution of
the Sy i.e. P{M(h) -u:; (for fixed h) plays a central role. In fact
the same asymptotic form (6.12) holds for this tail probability here,
as did for the special process £*(t) =ncoswt + 7 sinuwt. In this pres-
ent chapter it will be sufficient to obtain the following somewhat
weaker result. In this we shall use Slepian’s Lemma (Lemma 6.8) to com-

pare maxima of £(t) and £*(t) along the lines of a procedure origi-

nally used by S.M. Berman (1971 b).

LEMMA 7.2 Suppose that the (standarized) stationary normal process

{£(t)} satisfies (7.1). Then, witn tne above notation,
(1) for all h -0, P{i(h) ~u} <1 -4¢(u) +.h

so that 1limsupP!M(h) >u}/(uh) <1,

u et
{ii)} given & <1l there exists hj =ho(0) such that for 0. n Zhy
(7.3) P{M(h) »u} > 1 -4 (u) +68uh
so that liminfP{4(h) >u}/(uh) 28 for 0 <hzn,=hy(8)

u-+

PROOF (i) follows since

P{M(h) >u}l < P{£(0) >u} + P{N (h) 21}

A

1-4¢(u) + E(Nu(h)).

e secona result (ii) follows simply frof Slepian’s Lemma (Lemma
6.8) by comparison with the simple process ¢£*(t) given by (6.6). For
if w =ex§/2 we have, by (7.1), «r(t) <coswt for O0<t gho <T1/wn
(ho =h0(0) >@0). But this shows that the covariance functica of £ (t)
is dominated by that of £*(t) in [0,h0] and hence P{M(h) > u} >
p{M*(h) »ut for h :ho, (with M* as in (6.10)), which then aives

(ii) . o

Our remaining task is to approximate the maximum M(T) (for increa-
sing T) by the maxima over suitable, separated, fixed length subinter-

vals, and show asymptotic independence of the maxima over these




intervals. First we give a simple but useful lemma. In this, for g - 0,

(q)

N and N
u u

will denote the number of upcrossings of u in a fixed
interval I of length h, by the process <{g(t);, and the sequence
{£{kg), respectively. More precisely, Néq) is the number of kg € I
such that (k-1)g € I and %((? -1)g) <~ u < 7(kq) (cf. Lemma 6.3

9n

with g for 4, and Nn =N, ).

LEMMA 7.3 1If (7.1) holds, with the above notation, as u + =, qu -~ 0,
W en(T) = h+ o,
(11) P{M(I) <ul} = P{f(kq) <u, kq€I} + olu),

where each o(u)-term is uniform in all such intervals I of

length h < h0 for any fixed > G.

Alo
PROQF The number of points kg € T with (k~1l)g € I 1is clearly
(h/q) ~ 8 where 0 < £ < 2. Hence with Jq(u) defined by (6.1), Lemma

6.6 implies that

emT) (g+5)r>{:,(0) cu<ila);

(h-&Bq)Jq(u)

L}

wh(l-~0(1)) + O(uq)

where the o- and O-terms are uniform in h so that (i) clearly holds
with of(u) wuniform in 0 <h fho.

7o prove (ii), note thaat if a is the left-hand endpoint of I,

0

in

P{t(kq) <u, kg €I} - P{!1(h) <u}

p{E(a) >u} + Pi{gla) <u, Nuzl, Néq)=0}

A

- _a(a)
1= o(u + P{n, -N T 21},

A

The first term is o(¢(u)) = o(u), independent of h. Since Nu - Néq)

is a non-negative integer-valued random variable (cf. Lemma 6.3 (i)},
the second term does not exceed E(Nu -Néq)) which by (i) is o(u),

uniformly in (O,ho). Hence (11} follows. o}
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Now let u, T » » in such a way that Tu - 7 > 0. Fix h - 0 and
write n = [T/h]. Divide the interval [0,nh] into n pieces each of
length h. Fix ¢, 0 <c <h and divide each piece into two — of length
h-¢ and ¢, respectively. By doing so we obtain n pairs of inter-
vals Il' Ii, veey In’ I;, alternately of length h-¢ and ¢, making
up the whole interval [0,T] apart form one further piece which is

contained in the next pair, I*

In+l’ n+l°
LEMMA 7.4 As u -+ ®, qu >0 and Tu. -~ 1 > 0,

n

(1) limsup [P{M(U 1)) su} ~ P{M(nh) su}| < re
Tr=x l

n

n
(1i) Plg(kg) <u, kg€u I.} ~ P{M(U I ) <u} ~ 0.
1 ] 1 3T
PROOF For (i) note that

n
0 < P{MWU I,) <ul - p{M(nh) <u}
1

A

nP{II(Ii) >u}

2

% PIM(I$) > ul/ (ue)

since n = [T/h] ~ 1/(uh). Since 1} has length e, (i) follows from

Lemma 7.2 (i).

To prove {(1i) we note that the expression on the left is non-negative

and dominated by
2
z ,\p{a(kq) <u, kq€I.} - P{M(1.) gu}>
j=1 3 3

which by Lemma 7.3 (ii) does not exceed no(u) = [{T/hlo(u) = o(l),

(the of(u)~term being uniform in the Ij's), as required.

The next lemma, implying the asymptotic independence of maxima, is

formulated in terms of the condition (7.4), also appearing in Lemma 7.1.

LEMMA 7.5 Suppose r(t) - 0 as t » = and that, as T + =, qu + 0,

2
1. I p jrkg et /Ot IxGaD

- 0
€<kq<T

for each ¢ > 0. Thenags T + =, gqu » 0, Tu » 7,
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n n
(i) Piz(kg) <u, kgeu I i - I P{i(kg) cu, kq€I .} » 0
n n 21
(ii) limsup | § Pis(kg) ~u, kg€I_.; - P :M(h) ~ur < 5~ ¢
. - J - - h
T »eo j=1
for each ¢, 0 < . < h.

PROOF To show (i) we use Lemma 3,2, and compare the maximum of

n
z(kq), kq €U Ij under the full covariance structure, with the maximum

1
of £(kq), assuming variables arising from different Ij—intervals are
independent. To formalize this, let Al = (*ij) be the covariance

matrix of 4(kq), kq€U I, and let 20 = (xfj) be the modification
obtained by writing zeros in the off-diagonal blocks (which would

occur if the groups were independent of each other); e.q. with n=3,

[} I ]
] i [}
eI e LI et R
1 _ ] 1 0 _ ' |
M= ihyy thap ihage AR =0 A 0 0
__________________ g N
l i i '.
L : : | 1' J
From Lemma 3.2 we obtain
n n
(7.5) [P{g(kqg) cu, kq€U Ijb- 1 Pl£(kq) <u, kq€I.}|
1 j=1 J
1 1 0 2 ,-1/2 2
< == z L= s o | (1= pS. -u 1+ ¢0,.))
T 1<i<j<L“iJ 1JI( olj) exp(-u®/{ £i
=0 o= n
where L is the total number of kg-points in U Ij, and 945 = IAijl.
1

Since all terms with 1i,j in the same diagonal block vanish, while

otherwise sup Oij = § <1 by Letima 7.1 (i), we see that the double

sum does not exceed

2
= -
K I oijexm u /(l+oij)),

where I* indicates that the summation is carried out over i<3j with

(1,j) in the off-diagonal blocks only. But o is of the form |r(kq)|

ij
where there are not more than T/q terms with the same k-value. Thus,

since the minimum value of kq 1is at least ¢, we obtain the bound
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n
P{t(kqg) <u, kq€U I.} - 1 P{i(kgq) <u, kq €1}
i 1 J ]1 - 3

13

2 ,
< K g T [r(kq)le—u /(1 + kg )

e<kg<T
which tends to zero by Assumption (7.4) so that (i) follows.

To prove (ii), note that by Lemma 7.3 (ii),
0 < P{g(kg) <u, kq te} - P{H(Ij) <u} = olu)
(uniformly in j) and
0 < P{M(Ij) <u} - P{M(h) <u} = P(M(I;) >u}

so that by Lemma 7.2 (i), for sufficiently large n (uniformly in j)

0 < Pj - P < 2ue
where Pj = P{£(kq) <u, kg €Ij}’ P = P{M(h) <u}. Hence
n n n n
0< I P, -P < (max P,) = P < 2nue
- j=1 J - J

(using the fact that yn - x" < n(y-x) for 0<x<y <1). Part (ii) now

follows since np ~ Tu/h » t/h. o

The basic extremal theorem now follows readily.

_..2
THEOREM 7.6 Let u, T » «» in such a way that Tu = g%'é/ze ut/2 o,

1 > 0. Suppose that r(t) satisfies (7.1) and either (7.2) or the
weaker condition (7.4) (cf. Lemma 7.1). Then

(7.6) P{M(T) <u} » e ' as T » =,

PROOF By Lemma 7.1 the assumption (7.4) of Lemma 7.5 aolds. From Lemma

7.4 ana 7.5 we obtain

lim sup [P{M(nh} <u} - P"{M(h) cu}| < Ke
T+

for some K independent of ¢, and since € > 0 1is arbitrary it fol-

lows that

P{M(nh) <uj ~ P7{M(h) <u} » 0.
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Further, since nh : T =~ (n+1l;h, 1t follcws along now famij:ar
lines that
0 ¢ P:M{nh) _u; = P M(T) ~u- _ PN _th) -1 - _.h
which tends to zero, so that
. n: ST
PM(T}) cur = P "M(h) ~u- +2(1).
This holds for any fixed h > 0. Suppose now that + is fixed,
0 <% <1, and h chosen with 3 - h - h, where ho = ho(é) is as

in Lemma 7.2 (ii), from whence it follnws that

PIM(h) >uj 2 suh(140(1)) = = (L+o(1))
and hence
P{M(T) cu: = (1L-Pi{M(a) »u)+0(l)
2 (1=-31/n+0(1/n)) " +o(l)
so that

1imsup P{M(%) <u} < e ¢

T+o
By letting & *+ 1 we see that 1lim supP{M(T)<u' < e ', That the
opposite inequality holds for the liminf 1is seen in a similar way,
but even more simply, from Lemma 7.2 (i) (no * Leing involved) so

that the entire result follows. o

COROLLARY 7.7 Suppose the conditions of the theorem held, and let E

= ET be any interval of length YT for a constant vy » 0. Then

P{M(E) <u} » e™'" ag T » =,

PROOF By stationarity we may take E to be an interval with left end.-
point at zero, so that P{M(E) Zu} = P{M(YT) <u!. It is simply checked
that the process n(t) = £(yt) satisfies the conditions of the
theorem, and has mean number of upcrossings per unit time given by

Hp = YU, so that unT + YT. Writing “n for the maximum of -~ the

result follows at once since P{M(yT) cul = P{Mn(T) <ul s e Y7, .
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It is now a simple matter to obtain the double exponential limiting
law for MI(T) under a linear normalization. This is similar to the

result of Theorem 3.5 for normal sequences.

THEOREM 7.8 Suppose that the (standardized) stationary normal process

{Z(t): satisfies (7.1) and (7.2) (or (7.4)). Then
(7.7) P{ay (M(T) =by) < x} ~ exp(-e-x) as T » =
where

ap = (ZIOgT)l/Z
(7.8) 172

bT = (21ogT)l/2 + (loq—%f~)/(2logT)l/2.
PROOF Write T = e ¥ and define
(7.9) u? = 2(log T+ x+ log(+3/%/27))
8o that

1/2 -u¥/2  -x
Tu=T(‘\2 /27) e = e = 1.

Hence (7.6) holds. But it follows {rum (7.9) that

u= (2log1l) Ll + TTog T + o(log T)
= X -1
= aT + bT + o(aT )

so that (7.6) gives P{aT(H(T) -bT) +0(l) ¢ x} » e ' from which (7.7)

follows at once. a

It is of interest to note in passing that this calculation 1s some-
what simpler — due to the absence of a logu-term in (7.9), than the
corresponding calculation in the discrete case (cf. Theorem 1.11).

In the discrete case we obtained Poisson limiting behaviour for the
exceedances of a high level. Corresponding results hold for the point
processes of high level upcrossings under the conditions of this chap-
ter. These are readily obtained from the present extremal theory by

means of our familiar point process convergence theorem, as in the
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discrete case, resulting in a number of interesting conseguences con-

cernint local maxima, length of excursions, etc. we will defer such a

discussion to Chapters 3 and 9. However, it is worth noting here that

historically the asymptotic Poisson distribution of the number of high
level upcrossings was proved first (under more restricti-e conditions)
by Volkonski and Rozanov (1961). Cramér (1965) noted the connection

with the maximum given e.qg. by

(N (T) =05 = {(M(T) cu; U N (T) =0, 5(0) -u:,

which led to the deternination of the asymptotic distribution of M(T),

and subsequent extremal development.

Extremal results under weaker conditions at infinity

As already noted, the above extremal results may be generalized by weak-
ening of either (7.1) or (7.2). The weakening of the "local condition”
(7.1) by allowing tp = @ is somewhat more complicated and will be de-
scribed in Chapter 12. For a weakening of (7.2) - describing the behav-
iour of the correlation at distant points — we may proceed by similar
means to those used in the discrete case, and we devote the remainder

of the present chapter to this, following Leadbetter, Lindgren and
rootzén (1979) and Mittal (1979). Of course we cannot expect a substan-
tial weakening of (7.2) since it is clearly close to being a necessary

condition.

Let h(t) be any function and define

o (R) {te (0,Tl;jr(t) logt -h(t):
{(7.10)

aT(h)

#

»(GT(h)) = Lebesgue measure of 0T(h).

By analogy with the conditions for discrete time we will place restric-
tions on the amount of time that r(tj; logt 1is large by requiring
that there is some non-increasing function h with h{(t) + 0 as

t t+ «~ such that
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(7.11)  zg(R) = O(T/(log ™ f), for some <y » 1/2,

and some constant K > 0 such that

~

(7.12) QT(K) = 0O(T"'), for some - - 1.

Obviously the condition r(t) logt - 0 as t *» -, implies that ~T(h)

is empty if e.g. h(t) = sup r(s),6 logs, so that (7.11l) is actually
s>t
weaker than (7.2). In fact, (7.11) is also weaker than some other con-

ditions which have been used on occasions. For example, since
ST re) Pae s ij(n) (B(T)/log TP if h is decreasing, roedtyae < =

implies that LT(h) = O((log'T/h(T))z) for all h, so that (7.11) is
indeed weaker than the condition fgrz(t)dt < =, sometimes used in

the literature.

THEOREM 7.9 Let u = Up * ™ so that T. - t > 0, and suppose r(t) +- 0

as t - =, and furthermore satisfies (7.1l), (7.11l), and (7.12). Then

P{M(T) <u} + e ' as T » =.

PROOF By Theorem 7.6 we have only to show that ¢ - 0 may ke chosen

so that gu » 0, and (7.4) holds, i.e. for =< > 0O,

—u?/(1+ ek )

(7.13) ¥ 5 Ir(kq)le - 0.

£<kqs<T

Let 35(t) = suplr(s)|, let B satisfy 0 < 8 < (L-8(e))/(L+5(e)),
s>t
and split the sum in (7.13) into two parts at kg ™ TB, i.e. let 2!

e
be the sum over ¢ < kg ¢ TB and ¢ the sum over T < kg < T. Since

2
e /2 5yt

Ll

we can estimate i simply from the number of terms, as follows,

2
L (kg e 8/ letka)D

e<kqsT”

013
3
[

Nepl]

2
e"u /(1 +5(¢) ): j% pl+E=2/(1+5(2))

q q

3

‘5 Tl+ﬁ—2/(1+€
%*

qu

(¢) )10’7 T-o0




-33-

if gqu - G slowly enough.
For the remaining sum %" we need a bound on the number of terms
for which (r(kq)! logkq is not bounded by a small function. Define,

for a function h,
n.(h) = #k; T <kq <T, r(kq) logkqg -u(kqgl-

(where # denotes cardinality) in analogy with i,(h) in (7.10).

Since Kz < = and therefore r has a bounded derivative,
jr(t+h) - r(t)! < C'hj

for some constant C, and this can be used to give a bound for nT(h)

in terms of iT(h/Z). In fact, we will see that
(7.14) nT(h) < C'(log T/h(T)) lT(h/Z),

if T is large enough. Since, for t 2> kg, ir(t): logt > (ir(kq) @6 -

clt -kgq) logkq we have that if
ir(kq) | log kg > h(kqg)

and t is such that

h(T)

kq € t < kq + 3E7557

then
lr(t)] logt > hit)/2.

Since u ~ v21logT, h(T}/2CloaT ~ (h(T)/Cqu) *¢/u < g for large
T if gqu » 0 slowly enough. This implies tnat for T large en~ul,
the g which contribute to nT(h) also contribute disjoint inter-
vals of length at least h(T)/2C1logT to ?T(h/Z), and we get (7.14)
with C' = 2C.

We can now proceed by splitting the sum 7" according to whether
kG € ©,(2K) or not. Recalling the notation ¢&(t) = sup ir(s)|, we

s t
have
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T - T ring e o+ rikg) ) T n_(2K) e /L+2(T7))
q 1 - g T
T kg7
T —uz(l-ZK/1o~ Ti)
. = z rikq; e =ve
3 .
T <kg- T, qu%T(ZK)‘

(where the * denotes complementaticn). The first term in (7.15) is

bounded by

T

2 P
- A(r* c” 3/2, L+ =201+ (T
2 et (ogt/2K) 2y (xyo (1”2 T Bp o )

Since ~ < 1 Dpy (7.12) and F(TE) ~ 0, this bound tends to zerc as
T+ = and gqu - 0 slowly enocugh.

The second term in (7.15) is bounded by

L+ 3 I,r(xq) ! logkg = F, - F_,

2,.
T,2_~u”(1-2K/(2 log T)) 1
(7.16) (q) e ERTY A 1 2

say, where the sum is extended over all kq such that T3 < kg < T

and kg € ST(ZK)‘. We will see that F, may tend slowly to infinity,
but F2 -0 as T - = so that Fy 'F2 + 0. We start with F,, intro-
ducing the function h that appears in (7.11) and split the sum accor-

ding to whether kg € GT(Zh) or not, giving

F, = 2 :|r(kq): logkq

T
< % I + % z
kq€s,, (2h) * kQ€9, (2h) N9 (2K) *
kqg<T

tA

9.2 s 90 <
T°'g 2h(T™) + = ZRnT(Zh)

A

2h(T®) + 2kC' 2 (1og T/h(T)) Ly (h)

1

= 2h(t®) + () Hlogm 1V Y () c 01

= 2n(t? + k(D (qu),

say, by condition (7.11). Since 1/2 - y < 0, we can deduce that
k(T) -+ 0 as T » =, provided h(t) decreases sufficiently slowly.
Note that if (7.11) is satisfied for some function h, then it is satis-

fied for all functions which decrease more slowly. We therefore assume




that k(T) - 0 as T - =. The remaining factor Fy in (7.16i 1s given

by

P

po= (D)2mut (1= 2K/(2 log D) __1
1 q 5 logT
Using the fact that u2 = 21logT + O(l}) we obtain
F, = —flﬁiL- = o(l)/<QU)2.
7" logT

Thus, for some C - O,

CFL < C{Zh(T“) + k(T)l
1 P q2u2 qu

F

Since Kk(T) does not depend on the choice of q we may choose qu ~» 0
sufficiently slowly so that both terms tend to zero, which completes

the proof of the thecren. o

REMARK 7.10 As in discrete time, one would be inclined to consider a

condition like

(7.1 2z Ir(kq) | logkg e¥|¥ (k@) [ logka 4

r8ckqsT
as T » », for some & < 1, y > 2 which in fact can replace (7.11).
However, (7.17) contains the somewhat arbitrary spacing g, and a more
natural condition for a continuous time process would restrict the
size of

T

s lr(e)] logt eY{r(t)]logt
1

dt.

Jowever, it is not clear how this mignt be done, in relation to (7.17).
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CHAPTER 8

POINT PROCESSES OF UPCROSSINGS

The extremal theory of normal processes, as developed in Chapter 7, is
based mainly on the asymptotic independence of maxima over several se-
parate intervals of constant length, and on the form of the tail distri-
bution of the maximum over one such interval. In the proofs in Chapter 7
we made use of upcrossings, and of the obvious fact that the maximum ex-
ceeds u if there is at least one upcrossing of the level u. However,
as was seen already in Chapter 4, upcrossings have an interest in their
own right, and as we shall see here, in this continuous time setting,
they contain considerable information about the local structure of the
process.

This chapter is devoted to the asymptotic Poisson character of the
point process formed by the upcrossings of increasingly high levels,
and indeed, this requires only little more than is needed to obtain the
much weaker results of Chapter 7. In our derivation we shall make sub-
stantial use of the regqularity condition Ay < @, which implies that
the upcrossings do not "appear in clusters" and remain separated as the
level increases. In fact, Theorems 6.7 and 6.5 imply that there are on-
ly a finite rniumber of u-points in finite intervals. Similar resluts
will be established in Chapter 12, for the case AZ = o, with regular
upcrossings replaced by so called ¢-upcrossings.

We shall first prove asymptotic independence of the maxima over dis-
joint intervals, and then use this result to prove that the point pro-
cesses of upcrossings of several simultaneously increasing levels tend
in distribution to a sequence of successively thinned Poisson processes.

In the case of a finite fourth spectral moment this will eventually,
in Chapter 9, give the joint distribution of heights and locations of

the highest local maxima.
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Poisson convergence of upcrossings

Corresponding to each level u we have defined +« = u(u) =

i% Aé/z e_u2/2 to be tne mean number of u-upcrossings per time unit,
and, as in Chapter 7, we consider T = T(u) such tnat T. - * as

u ~+ », where 1 > 0 is a fixed number. Let NT be tne time-normalized
point process of u-upcrossings, defined by

N;(B) = Nu(TB) = #iu-uncrossings by £(t); t/T €Bj},

ior any real Borel set B, i.e. N; has a point at t if %4 has a u-

upcrossing at tT. Note that we define N; as a point process on the
entire real line, and that the only significance of the time T 1is that
of an appropriate scaling factor. This is a slight shift in emphasis
from Chapter 7, where we considered U, = x/aT +bT as a height norma-
lization for the naximum over the increasing time interval (0,T).

Let N be a Poisson process on the real line with intensity 1. To
prove point process convergence under suitable conditions, we need to
prove different forms of asymptotic independence of maxima over disjoint
intervals. For the one-level result, that N; converges in distribution
to N, we need only the following partial independence.

LEMMA 8.1 Let a = al< bl< a2< e < ar< br = b be fixed numbers, Ei =
(Ta;,Tb;), and M(E;) = sup{&(t); Ta; < t < Tb,i. Then, under the con-
ditions of Theorem 7.6,

r
T P{M(E,) <u} 0
=1 1 -

r
P( 0N {M(E,) _<_u}>—
i=1 + i

i=

as u-+>, Tu+71>0.

PROOF The proof is similar to that of Lemmas 7.4 and 7.5. Recall the
construction in Lemma 7.4, and divide the real line into intervals

cee s I, 131, I,, ... of lengths h-c¢ and ¢, alternately. We can
then approximate M(Ei) by the maximum on the parts of the separated

intervals I, which are contained in E Write n for the number of

i
r

Ia's which have non-empty intersection with v Ei' We at once obtain
i=]
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r r
0 < P( N My I, NE,) < u}) - p( n {M(E;) < u}>
i=1 k k 1 i=1 1

<n P{M(I;) >ul,

where (writing |2, <for the length of an interval E),
r

Z (b, -a,) <
i=1 * 1

-1
i

T(b-a) .

‘E-): h

1

n~h

W an
T3

1

Since Lemma 7.2(i) iaolies that

lim sup u-lP{M(II) >ul<e,

>

we therefore have

r
(8.1)  1lim sup lp( N {M(U T, NE,) 5u}) - P(

r
n
u-+o i=1 k =

{M(E)) gu})t

i=1

< Xe(b-a)

- h .
Now, let g=*0 as u-+* so that qu~0. The discrete approximation of
maxima in terms of £(3q), jqﬁﬁ IknEi is then obtained as in Lemma
7.4(ii). In fact, since there are n+ 3§ intervals I, which intersect

U, (wnere [&]| < r), we have

r r
: . \
(8.2) 05P(n{£(3q)gu, jgeu I nE.})—P(n M(U I, NE,) <u)}
i=1 k k . i=1 k K ! /

< E(P{£{3q) <u, quIKHEi} = P{M(Ikﬂﬁi) <uh)
k

(n+8)o(u) = o(l), as u-+®,

by Lemma 7.3(ii).

Furthermore,

r r
(8.3) P(n {e(ijq) <u, quUIknE.}>— ny, >0
i=1 X 1 =11

i

where Yy = )Il P{g(jg) <u, jqge Ik nEi), the proof this time being a re-

phrasing of the proof of Lemma 7.5(i).

By combining (8.1), (8.2), and (8.3) we obtain

r r

limsup]P(n {M(E)<u})- my | ¢ iefb-a)

= i’ - . il -
n -+« i=1 =

i=1

and in particular, for i=1, ..., r,
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-

(b -a)
h

)

lim sup w{M(Ei) <ul —yi! <

u > ®

]

dence, writing x, P{M(Ei) <ur, we have

P ; \ r
limsupJP'\ n_E;) :u:/ - T P{MI(E,) 7ul|
TR i=1 i=1 i
. _ r
< Lﬁlﬁ%_iil + limsup, 7y, = T x;. .
u-e  i=l i=1

But, with 2z = max jyi -xi] (so that limsupz < te(b-a)/h),

r r r
y; - &x; < T (x,+z) - Ix, <rz,
i ) = i . -
1 i=1 i=1 i=1 *

with a similar relation holding with Yy and Xy interchanged, and

hence

y, - ©oxg| ¢ EERoa)

lim sup
1t =1t

T 1

W
1K

Since ¢ is arbitrary, we have nroved the conclusion of the lemma. o

e
THEOREM 8.2 Let u ~+« and T~r71/u, where yu = f% A;/z e u /2,

pose r(t) satisfies (7.1) and (7.2) {or the weaker condition (7.4)).

and sup-

Then the time-normalized point process N; of u-upcrossings converges

in distribution to a Poisson process with intensitv .

PROQOF By the basic convergence theorem for simple point processes,
Theorem A.l1 (see Appendix to Part I), it is sufficient to show that,

as u-+>,
(a) E(Ng((a, b 1)) »E(N((a, bl)) = t1(b-a) for all ac<b,

and

-1zf_ (b, -a,)

(b) PINA(B) =0} ~P{N(B) =0} = e i=1"7" i
r

form U (a

i=1

for all sets B of the

i bi]' al<b1<...<ar<br.
Here, part (a) is trivially satisfied, since
E(N,I‘,‘((a, 1)) =E(Nu(Ta, Tb]) =Tu(b-a) » 1(b-a).

For part (b), we have for the u-upcrossings,
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r \
* = N = { = .
INT((ai, bi]) —0‘> P< n Nu(Ei) 0,)r

r
n
= i=1

PINA(B) = 0} =p< .

i
where Ei = (Tai, Tbi]. Now it is easy to see that we can work with
maxima instead of crossings, since

r r
O<P(0{N(H)=OO-P(O{WEJ§uﬁ
M=l B =1t

r r
= P(.” {Nu(Ei) =0rn U IM(E;) >u}>
i=1 i=1
r
< L P{f(Ta,) >ul - 0 as u » =,
; i
i=1

and since furthermore Corollary 7.7 and Lemma 8.1 imply that

r r r -r(bi- ai)
lim P( n {M(E,) <u}>=lim T P{M(E,) <ul= T e '
. i’ - . i’ - .
U+ i=1 u-»e 1=} i=1
we have proved part (b). o]

One immediate consequence of the distributional convergence of NT'
is the asymptotic Poisson distribution of the number of u-upcrossings
in increasing Borel sets T-+B. Since this is an important result we

formulate it as a corollary.

COROLLARY 8.3 Under the conditions of Theorem 8.2, if B is any Borel
set whose boundary has Lebesgue measure zero, then

(8.4)  P{NA(B) =r} - e-Tlsl(TIBI)r/r!, r=0, 1, ...,

as u » =, where [|B| is the Lebesgue measure of B. The joint distri-
bution of N;(Bl), N N%(Bn) corresponding to disjoint Bj (with
boundaries which have Lebesgue measure zero) converges to the product

of the corresponding Poisson probabilities. a

Full independence of maxima in disjoint intervals

A topic of some interest, which we have not touched upon yet, is the

relationship between tne intensity * and the neight u of a level
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2
for which T. =~ . If T = -/. = 12‘121/2ed /2 we have
5 ( log~ *loq(Z"/‘g/z)\
ut o= 21.ho\1- Tog T )

or

/2) 'z

1
log~ +loq(2”/)2 _1/2)

(8.5) u=(2logm) /%~ s +o((log T)
{2 log T)

However, any level which differs from u by c¢{((log T)"]'/2

) will do
equally well in Theorem 8.2, and it is often ccnverient to use the
level obtained by deleting the last term in (8.5) entirely. (The reader
should check that also for this choice the relation Tu. 7

holds.) If we write

/2)

1/2 logr-*log(Z"/Xé
(8.6) u. = (21log T) - 77

(2log Tt

®
we have, for t1>71 >0,

’

" (21log T :

so that levels corresponding to different intensities -, ** (under the

same time-normalization T) become increasingly close to each other, the
difference being of the order l/ut. Note that (8.7) holds for any

U U which satisfy T;(uf.) - e, Tu(uT) + 7, and not only for the
particular choice (8.6).

u(l) (2) (r)

> u 2 s 2U

Now, let be r levels such that the point

processes of upcrossings are asymptotically Poisson with intensities

0<T St1,2. e {7, under one and the same time-normalization, i.e.
(1)) - g tel

Tu (u Ty i=1, ..., r as - =, We shall prove the full as-

ymptotic independence of maxima in disjoint increasing intervals under
the conditions (7.1) and (7.2) (or condition (7.4) with u replaced by

u(r)) i.e.

(8.8) W20+ e k) )

FeRLs]

I . r(kq) e
£<kqg<T

-0

for each € > 0, and some q - 0 such that u(r)q - 0.
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(1), (2) (r) -

THEORE!I1 8.4 Let u >\ 2 ... zu - o, + =, and suppose

i) 2
) = Lalz gtz

Suppose that r(t) satisfies (7.1), and either (7.2) or the weaker con-

dition (8.8). Then, for any 0O<a =a) “bjca,“...ca <b =b,

(Ei =(Tai.Tbi]).

s
- -~
/ s i;l_(bi ai)
(8.9) Py N {M(E,) <u .}>-»e
. i’ =77,
i=1
where each u, . is one of u(l), ...,u(r) and Ty (u y - 1!,

T,1i T,i i

PROOF For proof it is enough to check that
(5 Ly e )
: (e Sup g

I P{M(E,) <u, .; = O,
1 i :

P\ 1 T,1

s
; :
and this goes step by step as the proof of Lemma 8.1, with u replaced
by appropriate uT,i' We only have to make sure that one can use the
same grid in the discrete approximation for each level u(i), and this
is easy, since (8.7) implies that u(i)q —u(j)q > 0 wunder the stated

conditions, so that u(i)q - 0 if u(r)q + 0, {cf. the proof of Theo-

rem 4.9). o

Upcrossings of several adjacent levels

The Poisson convergence theorem, Theorem 8.2, implies that any of the

ey

time-normalized point processes of upcrossings of levels > ... 2u

T, >0 as T, u(l) > ©, We

(i,
) 1

are asymptotically Poisson if Tu(u
shall now investigate the dependence between these point processes,
following similar lines to those in Chapter 4.

To describe this dependence we shall represent the upcrossings as
points in the plane, rather than on the line, letting the upcrossings
of the level u(i) define a point process on a fixed line Li as was

done in Chapter 4. However, for the normal process treated in this

e




chapter tne lincs Lye eeen b Sanowe chesen ©7 nave a very sitLle Y-

Lation to the process itsell Ly ("i.l2inhy the Lrocess
Tty o= an (T L
p N I

where time has Leen normalized Ly 2 factor 7T and reirant

1/
a., = {(21lczT)
4

; 1 \ /2 ) L2
o, = (2 log7) /2 1575 "2/ /27 /(2 log T,

as usual.

Now, {T(t) = x if and oniy if S (tT) = x/a. +bT, and clear.y the
Py

mean numper of upcrossinjs of the level x by .(t) in an intervai

B PN
Py

; ; ; Th | o2 s
of lengtn h 1is equal to 53 Aé/Z exn{~(x/a. “ 5o /2), which zy (8.6)
- 4
. - v -X . :
equals n:(l+o(l)) as T +=, witn =~ = e ". Therelicre, let Xy 2 X,
Zoeee ZXy be a set of fixed numbers, defining horiznntai lines Lys Ly

et Lr' anu consider thne point process in the plane formed by the up-
crossings of any of these lines by the pnrocess ZT(t;. Here tne depen-
dence between points cn different lines is not guite as simple as 1t

was in Chapter 4, since, unlike an exceedance, an upcrossingy ~:i a n
level 1is not an upcrossing of a lower level and there may in fact even
Le more upcrossings of the higher than of the lower level; see¢ the fol-
lowing diayram, which shows the relation between the upcrossings of le-
Y

vels = Xi/aT +bT oy 4(t), and of levels x. by “.,(t). A5 is

1 T
seen, local irregularities in the process 7 (t) can cause the appear-

ance of extra upcrossings of a high level, not present in the lower ones.

H

~'\-un-l ‘..... XN e X1 YY
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ret N* denote the point precess in the . l..c¢ formed by the upcross-

T
inis of the fixed levels LTS PR by the process 7T(t) =
aT(;(tT, = e, ano e LtDooulconents on the SCLArate 114ao5 Lo
(1 r
NT ), ey hT ’, s that
N%(B) = #-upcrossings in B of Ly ceer by by 'T(t’

Hlla

U

(1)
. NT (BIWLi),
i=1

for arbitrary Borel sets BEZRZ.

We shall now prove that N; converges in distribution to a point

process N in the plane, which is of a type already encountered in con-
necticn with exceedances in Chapter 4. The points of N are concentrated

on the lines Ll’ .ee, L and its distribution is determined by the joint

r

distributions of its components N(l), ceay N(r) on the separate lines

L L

1t e re

Let, as in Chapter 4, f‘oc..; §=1,2, ...} be the points of a Poisson
13

NF) with parameter 1. =e ' on L_. Let 8., j=1,2, ...

r r j
(r)

process
be i.i.d. random variables, independent of N with distributioa de-
fined by

P{Bj =s} = (Tg41 ™ Tpmg!/Tpr =14 o0u,x-1,

Tl/Tr, s=r,

so that P{sz s} = 1 for s=1,2, ..., r.

(L

r—s+1/Tr

Construct the processes N(r—l), .esy N by placing points

5o
23"
c3j, ""Oﬁ~j on the Bj- 1 lines Lr-l' ""Lr~d 1’ vertically above
3 .

Glj’ j=1,2, ..., and finally define N to be the sum of the r pro-

cesses N(l) ,N(r).

7 s e

(k)

As before, each N is Poisson on Lk' since it is obtained from

(r)

the Poisson process N by independent deletion of points, with de-

letion probability 1 -P{Bj >r-k+1} = l1-1/7,, and it has intensity

rr(tk/rr) = Ty Furthermore, N(k) is obtained from V(k+l) by a bi-

nomial thinning, with deletion probability 1 - Tk/Tk+l. 0f course, N

itself is not Poisson in the plane.




a higher than of a lower level. Wit acunveniont abLusSe of notati in, Write

(i)

Nél)(l) for the number of points of Np

with time-conrdinate in 1.

.=
When proving the main result, that N; tends 1in distribution to N,
we need to show that asymptotirally, there are not more upcrossings of #
and A

LEMMA 8.5 Suppose Xy Xy, and consider the point processes N

(1)
J T

N;J) of upcrossings by iT(t) of the levels X, and x_, respectively.

Under the conditions of Theorem 8.2, d
JERELNS SIS LS SRR
as T » », for any bounded interval I.

PROOF By stationarity it is sufficient to prove the lemma for I =(0,1}.

Let Ik = (Eil, %], k=1, ..., n, for fixed n and recall the notation
-x.
(8.6): u, = xj/aT.+bT, tj =e 7, Since, by Thecrem 6.7 all crossings
are strict, the event ‘Néi)(x) vN;J)(I)~ implies that one of the events
n
IRL R
k=0 3
or
n
v (v (1) 2 2)
k=1

occurs, so that Boole’s ineruality and stationarity give

(1)
P{NT

(1) gy 5 '3 : kT, |
PINS(D) >N (D e T RIR(SD) P b .

k=0 ik
=+ 1P u s eneinM ) 2
3

et s

(1,) > 2}

Obviously, (n+1)P{7(0) -u !+ 0, while by Corollary 8.3,

3
-1./n 1 ~-1./n
pingD rpy 22bs1-e V- 2o 1
which implies
-t,/n 1 -1./n
um sup PN (D SN (D) cn-e V-t e 1T,

T+
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Since n is arbitrary and

n{l -eﬁf/n —é e‘-/n1 - Q

as n * = (71 >Q), this proves the lerma. c

THEOREM 8.6 Suppose that r{t) satisfies (7.1) and (7.2} (or, more

generally (8.8)), let -, T e T Ty be real positive numbers, and

a

let NY Dbe the point process of upcrossings of the levels Xp 2%y 7.
-X,

T
- X (ti =e ) by the normalized process {T(t) =aT(£(tT) -bT) re-

-
L

presented on the lines Ll' ceer Ly Then, as T =+ =, N; tends in

distrjbution to the point process N in the plane, described above, with

points on the horizontal lines Li’ i=1l, ..., r, generated by a Poisson

N(r)

process on L with intensity Tpr and a sequence of successive

r

y ()

binomial thinnings with deletion probabilities 1 _Tk/rk+l’

k=1, ..., r-1.

PROOF This follows similarslines as the proof of Thearem 4.11, in that

one has to show that

(a) E(N;(B)) +E(N(B)) for all sets B of the form (a,b]x{(a, &1},

0D<a<b, a<g, and

(b) P{N}(B) =0} - P{N(RB) =0} for all sets B which are finite unions

of disjoint sets of this form.

Here, if B=(a,b] x (a,8)] and (a, 8] contains exactly the lines

L eees Ly

s’ t

t t
fTb-auu'®)y s b-a) 1«
k=s k=s

(k)
T

t
. =
E(NT(B)) E( I N

((a,b]))
k=s

k

E(N(B))

80 that (a) is satisfied.

To prove (b), as in the proof of Theorem 4.11 write B in the form

m m jk
ssuc=u((a.b1~u(a 8 1)
k=1 X k=l\ XK gap K37 TKIT/,
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where (ak,bk] and (a‘.,b‘,] are disjoint for k ¢ i, For each x, .et

mk be the index of the lowest Lj that intersects C;f, i.e.
‘e, )

= I > i q S I M = !
Lmkﬂck#ﬁ, Ljnck-g for j my . Then clearly, if NT ((ak’Dk“ 2
then either NT(Ck) =0 or there is an index i “my such that
(1) 5 : . . .
NT ((ak,bkl) >0, i.e. in (ak,bk] there are more upcrossings of a
higher than of a lower level. Since obviously NT(Ck) =0 implies
(m, )
.k _
NT ((ak’bk]) =0,

m (m, )

0 =« P( 2 (Np ((ak,bk]) =O;> - PtNT(B) =0; - 0,

since the difference is bounded by the probability that some higher
level has more upcressings than a lower one, which tends to zero by
Lemma 8.5.
But
’Nmk)((a b Iy =o0tn{s (a ) <x_ }={M((Ta_,Tb, }) - :
e k' °k T K <X T L

where Up k= *n /aT+bT, so that Theorem 8.4 implies that

k
R \ (" \
lim p( n {N ((ay, bk]) =o}/=lim p\ n {M((Tay, Tb 1) Zup,y)
T k=l T+ k=1 S 4
m ~t'(b =-a,)
- D kKT
-x_ k=1
where Tl'<= T < e k., Clearly this is just P{N(B) =0}, and thus
k

the proof of part (b) is complete.

COROLLARY 8.7 Let (5(t)} satisfy the conditions of Theorem 8.6,

and let Bl, ceey Br be real Borel sets, whose boundaries have Lebesgque

measure zero., Then, for integers m(.k) ,

(k) (k)L =
P{NT (Bj)—mj e J=1, ..., 8, k=1, ..., r}

(k) (k)

+P{N (Bj)=mj 3=, ...,8, k=1, ..., r}.

For example, for disjoint Bl and BZ'
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(1) (1) (1) _ (1) (2) _(2)
PfN,r (Bl) =m,", Ny (82) =m,", NT (82) =m, }
m{l) m;z)
-7, 1B, | (ty!By D) ~T,1B, | (rzlszl)
Te §Y) "€ (2)
ml ! m2 H
nl2) (D (2) (1)

CEnE (g™ oot
T2

R SR
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CHAPTER 9

LOCATION OF MAXIMA

So far, we have examined the extremal properties of a continuous process
£{t) Dby sections at certain (increasing) levels. Even if this gives
perfect information about the height of the global maximum of the prc-
cess, it does not directly tell us where this maximum occurs or how it
is related to possible lower local( maxinma.

The maximum of ¢{(t), 0 < t < T, is certainly attained at some point
in [0,T]). However, the maximum level may be reached many times, or
even infinitely often. But there will — by continuity of £(t) — be a
first occasion on which ¢£(t) attains its maximum in [0,T], and we
denote this by L(T).

We state tne first result concerning L(T) as a lemma, though it is

rather obvious.

LEMMA 9.1 L(T) is a r.v. For 0 < t < T, P{L(T) <t} =

= P{M(0,t) >M(t,T)}.

PROOF Both statements follow from the equivalence of the events
{L(T) <t} and {M(0,t) >M(t,T)}, the latter being measurable since

M(0,t) and M(t,T) are r.v.'s. a

The distribution of L(T) can have a jump at 0 end at T as
simple examples (such as the process ¢(t) = Acos (t -4) with T < 27)
show. However, a simple condition precludes the possibility of any
other jumps in the distribution of L(T), and this is generally satis-
fied except in "degenerate" or "deterministic" cases.

Specifically we will say that £(t) has a derivative in proiability
at t, if there exists a r.v. n such that

E(to +h) - E(to)
h + n in probability as h -+ 0.

Clearly if ¢ has a g.m. or probability-one derivative, it has a de-

rivative in probability (with the same value).
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THEQREM 9.2 Suppose that (t) has a derivative in probability at t
(where O < t - 1), and that the distribution of this derivative is

continuous at zero. Then PriL(T) =t} = 0.

PROOF Let n denote the derivative in probability at t. Clearly

(L(T) =t1 < {= " < B >

0:

for all h > 0 such that 0 <t - h and t + h < T.

Now (5(t+h) - £(t))/h » n in probability as h + 0 and there
exists a seguence {hn} such that (£(t +h) - E(t))/hh + 1 with prob-
ability one. By considering a subsequence of {hn} we may also arrange
that (& (t —hn) - g(t))/(—hn) + n with probability one, i.e. on a set
B with P(B) = 1. We see that n = 0 on {L(T) =t} n B, i.e.

{L(T) =t} N B < {n = 0; and hence

P{L(T) =t}

1A

P({L(T) =t; n B) + P(B) < P{n=0}) + p(BS) = 0,

when n has a continuous distribution. o]

Turning to stationary processes, one may be tempted to conjecture
that if £(t) 1is stationary, then L(T) is uniformly distributed
over (0,T). For example this is so if £(t) = Acos (t-¢), with ¢
uniformly distributed over (0,2n], for T = 2n. (If A is Rayleigh
distributea and independent of ¢, &£(t) of course is normal.)

If T < 2n, there is a positive probability of L being 0 or T,
and L(T) 1is not strictly uniform. However, its distribution is still
uniform between 0 and T as a simple calculation shows.

In general, however, L need not be uniform in the open interval
(0,T), not even if £(t) 1is normal and stationary. As an example of
this, let Gy ¢2, Al’ and A2 be independent, with ¢l and ¢2 uni-
form over (0,2r), and wita Al and Az Rayleiga distriputed, and put
£(t) = Ay cos (t _¢1)‘+ A, cos (100t -®2). Then £(t) 1is a stationary
normal process, and (e.g. by drawing a picture) it can be seen that if

Ay < Ay, 0, € (3n/2,2n), and $, € (n/4,31/4) then the maximum of




:(t) over [0,7/2] is attained in the interval (0,%/100]. Hence
P{L(r/2) £7/1001 > P{A| <A, 37/2<: 227, /4« ¢2§3n/4} =

= (1/2)(l7/4)(1/4) = 1/32 > 1/50 = (+/100)/(=/2), and L("/2) can not
be uniform over (O0,n/2).

However, for a stationary wnsrmal process the distribution of L 1is
always symmetrie in the entire interval [0,T], and possible jumps at
0 and T are equal in magnitude. This follows from the reversibility
of a stationary normal process in the sense that {£(-t)} has the same
distribution as {£(t)}.

One method of removing boundaries, like 0 and T, is to let them
disappear to infinity, and one may ask whether L = L(T) might be as-
ymptotically uniform as T -~ ». For normal processes, this is a simple
consequence of the asymptotic independence of maxima over disjoint in-
tervals, as was previously mentioned. We state these results here, as

simple consequences of Theorem 8.4.

THEOREM 9.3 Let {£(t)} be a stationary normal process (standardized
as usual) with A2 < =, and suppose that r(t) logt - 0 as t -+ =,

Then;
P{L(T) <4T} - 2 as T » » (0<g<l).
PROOF With the usual notation, if 0 < 2 <1, 2* =1 - &, and

Xp

alT(M(O,QT) -b )l

LT

Y

r = AgapMET,T) -b

gap)

’

where a's and b's are given by (7.8), then
P{Xp <%, Yo <y} ~ exp{~e * -e"Y}

(x>0, y>0) as T » «=. Furthermore

P{L(T) <sT} P{M(0,2T) >M(¢T,T)}

Ao
P{x-lTy

T A, T2 ayp(bpaqg ~byp)}




where a..T/a:m » 1 and aﬁT(bﬂ_m -biT) - log{:*/.,. s T - the
above probability tends to
PIX-Y >log’*/
. : -x
where X and Y are independent r.v.'s with common d.f. exp(-e 7},
and an evaluation of this probability yields the desired value -. o

tleight and location of local maxima

One conseguence of Theorem 9.3 is that asymptotically the global maxi-
mum is attained in the interior (0,T) and thus also is a local maximum.
For sufficiently reqular processes one mignt consider also smaller, but
still high, local maxima, which are separated from L(T).

We first turn our attention to continuously differentiable normal
processes which are twice differentiable in guadratic mean.

In analogy to the development in Chapter 4, we shall consider the
point process in the plane, which is formed by the suitably transformed
local maxima of ¢(t). (Note that since the process ¢(t) 1is continuous,
the path of aT(g(t) -bT) is also continuous, and although its visits
to any bounded rectangle B © R2 are approximately Poisson in number,
they are certainly not points.)

Suppose £(t), 0 < t < T has local maxima at the points s with
height E(si). Let ap and bT be the normalizing constants defined
by (7.8), and define a point process in the plane by putting points at
(T_lsi, aT(i(si) -bT)). We recall from Chapter 8 that asymptotically
the upcrossings of the fixed level x by aT(E(t) —bT) form a Poisson
process with intensity 1 = e ® when time is normalized to t/T, and
that an upcrossing of a level x is accompanied by an upcrossing of

the higher level y with a probability e-y/e_x = e-(y-X).




when investigating the Poisson cuaracter of local maxima, a guestion
of some interest is to what extent high level upcrossings and high local
maxima can replace each other. Obviously there must be at least one lio-
cal maximum between an upcrossing of a certain level u and the next
downcrossing of the same level, so that, loosely speaking, there are at
least as many high maxima as there are high upcrossings. As will now be
seen there are, witih high probability, no more. In fact we shall see
that this is true even when T + « in such a way that Ty =

1 .1/2 _-u?/2

PR I

First recall the notation from Chapter 6,

=T converdges.

NL'I(a,b] = #{sie (a,p]; c’,(si) >u}l,

N&(T) = N&(O,T].

2
LEMMA 9.4 If A, < ® and T ~ 1/u = 1 21 2°1/2 &9/2  then

4 2 !
(1) E(N/(T)) = 1
and
(11) P{INI(T) =N (T)| >1} » 0

as u —» «,
PROOF First note that at least one of the fcllowing events occur,
' >
{(NJ(T) 2N, (T)} or ({&£(T) >u}
and that in the latter case, N&(T) > Nu(T) - 1. Tnerefore

POINY (T) =N (T) | > 1}

A

E(]N&(T) - N (T) 1)

< E@L(T) =N (T)) + 2P{¢(T) >ul,

it

and since E(Nu(T)) v and P{&(T) >u} - 0, (ii) is a direct conse-

gquence of (i). But E(N&(T)) is given by (6.18) where we can use

1l - ¢(x) ~9(x)/x as x » », so that for some constant K,




ro /2 172 - X 1/2 .
T (_4) BV SR S S SR U O R SR S N AR
2 (32} (l V\u\ﬁ _)2} )] - K u '\\u\; -;2/ e 3 uj
472 47’2
wilile
L (;é>l/2 ) (21>l/2 % (u) :(u( g 2)\
2 \Az 2 4 (» _,2)1 )
T 172 -u/2
=35t e (L+o(l)) -
as u * ~©, which proves (i). .

THEOREM 9.5 Suppose the standardized stationary normal process ‘£ (t):
has continuously differentiable sample paths and is quadratic mean

differentiable (i.e. i, < =), and suppose that r(t) loegt - 0 as

4

t » «, Then the point process N% of normalized local maxima (si/T,

aT(g(si) -bT)) converges in distribution to a Poisson process N' in

the plane with intensity measure equal to the product of Lebesgue mea-

sure and that defined by the increasing function -e7%,
PROOF By Theorem A.l it is enough to show that
(a) E(N%(B)) -~ E(N'(B)) = (b=-a)(e”* -e-e) for any set B of the form

(a,b] x (2,E}, 0 < a < b, a < &, and

(b) PfN%(B) =0y » P{N'(B) =0} for sets B which are finite unions of

sets of this form.

To prove (a), we use Lemma 9.4 (i). Then, with u(l) = ;; + bT’
(2) 1 T
u =~a—'+bT
T ’
b(NT(B)) = E(Nu(z)(Ta,Tb)) - E(Nu(l)(Ta,Tb)) -

» (b-a)e™ - (b-a)e ® = (p-a)(e™-"Y,

since Tuu') s e B, e for i =1, 2.
Part (b) is a conseguence of Lemma 9.4 (ii) and the multilevel up-

crossing theorem, Theorem 8.6. Let Nu(I), as before, denote the number
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of u=-upcrossings by 7{(t), t € I, and write the set B 1in the form

U Ej XFi' where Ej = (aj'bj] are disjoint and each Fj is a finite

union of disjoint intervals. Suppose first that there is only one set
: _ _ . (2k-1)

Ej' i.e. B =E x ; Gy where Gy = (uk,Bk], and write u

= (2ky _ . s _

= Bk/aT + bT' u = 3k/aT + bT' According to Lemma 9.4 (ii) asymp

totically every upcrossing of the high level u is accompanied by one

(and no more) local maximum above that level, and hence

PINL(E XGy) =0} = PtNL‘l(Zk) (Ta,Tb) =N;(2k-l) (Ta,Tb) :
= P{N (2x) {Ta,Tb) =N . . (Ta,¥b); + o(l).
u u
% 8y
By Theorem 4.6, with Tog = © ¢ Top-1 = © ,
P{N (2K) {(Ta,Tb) =N (2k-1) (Ta:Tb);
u u
o -T - - J - 3
w7 o Tax(bra) (tg(ba)) (‘2k-1)3
z —
j=0 ) T2k
~3 -
ce Tk Tt BT gy e Ko Ky

P{N'(E x G ) = 0}.

By slightly extending the argument we obtain

P{NL(E xU G, ) =0} = P/U{N (Ta,Tb) =N (Ta,Tb)}\ + o(l)
T K Kk \k o (2K) g (2k-1) /
~a -8
-(b-a) I(e K-e K
+> e k

P{N'(E x U Gk) =0},
k

and we have proved part (b) for sets B of the simple form B =

ExV Gk‘ The general proof of part (b) is only notationally more com~
k

plex. o
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Location of the largest maxima

The limiting Poisson process in Theorem 9.5 has exactly the same dis-
tributions as that in Thecrem 4.17 for < (t) normal, since lc35G(s) =
= -e™® in this case. This means that all consequences that can be
drawn from that theorem about asymptotic properties of the norrmalized

point process an(r:i —bn) also carries over to the normalized point

process of local maxima aT(;(si) —bpt.

As an example we shall use Theorem 9.5 to give the simultaneous dis-
tribution of location and height of the two largest local maxima of

2{t), t € (0,T]. Let M) (T) be the highest and M,(T) the second

2
highest local maximum, and Ll(T), L2(T) their location.

THEOREM 9.6 Suppose (7(t)} satisfies the hypotheses of Theorem 9.4.

Then

(9.1) P{aT(Ml(T) - bq) Xy Ll(T) 2T aT(MZ(T) -bT) $xy, LZ(T) gizT;
S e*e-xz(l +e—x2 -e-xl)

as T - =, for 0 < fpe By < 1, Xy © Xy

PROOF The asymptotic distribution of the heijnts of the two highest

local maxima,

Plap (M) (T) =br) <x, ap (M (T) ~by) < x,5

-x
2 -X -x
- e € (1 +e 2 -e 1),

is a direct consequence of Tieorem 4,14, formula (4.20), and the obser-
vation above that the limiting point process of normalized local maxima
(s,/T) aplg(sy) -br)), 0 < 8; < T, is the same as that of a normalized
sequence of independent normal r.v.’'s (i/n, an(s1 -bn)), i=1, ...,n.

But alsoc the location of the local maxima can be obtained in this
way. Suppose e.g. by < 12, and write I, J, K for the intervals

(O.EIT)' (ElT.QZT). (KZT.T), respectively. With u(l) = xl/aT + bT'




2 ‘ ; . . .
u( - xz/aT T D the event in (9.1, can be expressed in terms ~f tne

highest and second nighest lncal maxima over I, J, K as

(1) (2) (2)

MDD cutth, My (D) Zu » Mp(J) Zu

1 P M (3) o

l(J)r

ML(K) :MZ(I Ul

and the limit of the probability of this event, when expressed in terms
of the point process N% of local maxima, is again the same as it
would be for the point process of normalized independent r.v.'s. For
such a process ooviously Ll(T)/T and LZ(T)/T are independent and

uniformly distributed over (0,1) and independent of the heights of

the maxima, which proves the theorem. =

Maxima under more general conditions

We have investigated the local maxima under the rather restrictive as-
sumption that ¢£(t) is twice differentiable (in quadratic mean), i.e.
)4 - =, If by =™ the mean number of zeros of £'(t) is infinite, by
Rice’s formula, and in fact infinity close to every local maximum there
are infinitely many more, which precludes the possibility of a Poisson
type limit theorem for the locations of local maxima.

One way of getting around this difticulty is to exclude from further
considerations a small interval around each high maximum, starting with

the highest. To be more precise, let
M (T) = sup{f(t); t€ (0,T)}
be the global maximum, and
Ll(T) = inf{t > 0; £(t) =M1(T)}

its location. For ¢ > 0 an arbitrary but fixed constant, let Il =

= (O,Ll(T) -c)U(Ll(T) +¢,T), and define




i

W
T
1

supii(t); t€l

JoN
1
It

12, - 1
I“Z,i(T) = infttEIl; S {e) —5«12,__('1')
Proceeding recursively, with
L= Ty 0 Ly 00 =2y Ly (T ),
we get a seguence Mk,a(T)’ Lk,a(T)’ Ml,e(T) =H1(T), Ll,E(T) =L1(T) of

neights and locations of :<-maxima, and there are certainly only a finite
number of those in any finite interval. In fact, it is not difficult to
relate these variables to the point processes of upcrossings (in the
same way as regular local maxima can be replaced by upcrossings of high
levels if A4 < =) and thereby obtain the following Poisson limit theo-

rem, the proof of which is omitted.

THEOREM 9.7 Suppose {:(t)} is a standardized normal process with

)2 < o and with r(t) logt + 0 as t » =, Then the point proucess
(e) . _ . _

Np of normalized e-maxima (Li,e(T)/T’ aT(Mi,E(T) bT)) converges

in distribution to the same Poisson process N' in the plane as in

Theorem 9.5. o

Note that the limiting properties are independent of the ¢ chosen.

We shall return to processes with even more irregularity in Chapter 12.




CEAPTER 10

SAMPLE PATH PROPERTIES AT UPZRISSINGS

e

Qur main concern in previous chapters nas been the Jistrituticn o

wne
number and location of upcrossings of one or several ad;acent levels
and of high local maxima. For instance we xnow from Theorerm 8.6 and
relation (8.7) that Ior a standard normal process each upcrzssing oF

the high level wu = u_ with a probability p = <*/: s accompanied

by an upcrossing also of the level

asymptotically independently of all other upcrossings ot u and  u_,-

In order to throw further light on the conclusions and proofs in
previous chapters we will now introduce some new concepts which give
more precise information about the structure of the sample paths =f
{£(t)} near upcrossings of a level u. Perhaps a word of warning 1is
appropriate here, that we will need some slightly more difficult argu-
ments that have been encountered so far.

We assume, as we did in Chapters 7 -9, that 7(t): 1is a stationary

normal process with E(g(t)) = 0, E(gz(t)) = 1 and covariance function

r(z) satisfying
2 2
(10.1) r{r) =1 - x,t7/2 +0(:7) as < - 0.

With a slightly more restrictive assumption,

{10.2) -r"(1) =, + olilog;r 2

. ) as 1t - C

for some a > 1, we can assume that {£(t); has continucusly differen-
tiable sample paths -~ see Cramér and Leadbetter (1967), Section 9.5 —
and we will do so since it serves our purposes of illustration. We also
assume throughout this chapter that for each choice of distinct non-zero
points §;s .., S,, the distribution of £{0), £'(0), s(sy), cees Bs))
is non-singular. (A sufficient condition for this is that the spectral




distriounion F naz oa s ZlTpinent, ses Jramér oand Lei-
Leteer (2367,, SeTticn LL.-
iince N S vhe rurier Lf oLnTrossinis Lf osne L .oin
B I :
any counded Interval 15 3 Tinlte fXLeTwaslsn ani ST o wll. Le TLnlte
ALER rooacilitny Lne. Lecs
- . . .
-1 oL . Z
4itnooos. < L < . pe t<re [ZZations cf the lpcrossings $f Lo ooy (v
anl nite st S « - *. As zeitre, we Lcrn.te zy N ~ne
Lre process 58 LpCrassinss With events at :kl.
noor v, oretiln nftrmation ahoun S TEeAY %S LDTroS3inTd,
w2 oW oattacth %o oeach ot A Tuircr 7 which 1s a function def:ned as
©, = Lot o+r),
o« * K
Thn.s, tne mark - _(t): 1s +<ne entire sample function of Ity

~rarns.a<ed Lacr oy the distance

rt
A

5

ir. particular 'k(ﬁ) = i1, whi.e for small t-vaiues - (%) descrigpe




the behaviour of the 7-process in the immediate vicinity of its «-=n

U-upcrossing t Of course, any =f the marks, say t:, Tontains

K “of
perfect information about all the upcrossings and all other marxs, s3
different {nk(t): are to:taily dependent.

The marks are furthermore constrained by the reguirement that :l
is the first upcrossing of u after zerc, t2 the second and sc cro,
which suggests that the different marks ..., ‘-, (t)},
are not identically distributed.

One would feel inclined to lock for the distribution »f the mark at
an arbitrary upcrossing without respect to its location. Intuitively,
the distribution of nk(t) is the conditional distribution of the pro-
cess at time tk + t given that there is an upcrossing of the level
u at some time S Two difficulties are involved here. One is, as
was previously noted, that the marks are not identically distributed,
which is somewhat incidental and due to the choice of time origin. The
other difficulty is that the event that there is an upcrossing of u
at t has probability zero if t 1is a fixed point. It is therefore
not at all clear how one should define the conditional probabilities.

In point process theory, the abovementioned difficulties are resolved
by the use of Falm distributions (or Pazlm measurez), which formalize the
notion of conditional distributions given that the point process has a
point at a specified time . We shall use a similar approach here to

obtain a Palm distribution of the mark at an arbitrary upcrossing, and

then examine this distribution in some detail.

Palm distributions of the marks at upcrossings

The point process Nu on the real line formed by the upcrossings of
the level u by {£(t)} 1is stationary and without multiple events,
i.e. the joint distribution of Nu(t +I.), 3=1, ..., n does not depend

]
on t, and Nu({t)) is either 0 or 1l; (here t +Ij is the set Ij
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Palm probabilities can also be obtained as limits of ordinary condi-
tional probabilities given a point, i.e. an upcrossing, not exactly at
0, but somewhere nearby. Let ty be the last u-upcrossing for ~(t)
prior to 0. Then

u o .
Po(no(sj) <Yy 3 1, ..., n}

= i - = . < 0%,
(10.4) itg Pii(t, +sj) ﬁyj, j=1, ...,n -h<t, ,

where it may be shown that the limit (10.4) exists, and equals the ratio
(10.3). In fact, (10.4) can be taken as a definition of the Palm distri-
butions, an approach which was taken by Kac and Slepian (1959}, who

also termed it the horizontal window conditioning of crossings, indi-
cating that the sample path £(t) has to pass through a horizontal
window {(t, u); -h < t < 0}. This is in contrast to vertical vi=iov
conditioning which requires that u < £(0) < u+h, £'(0) > 0, so that

the process has to pass through a vertical window {(0, x); u < x < u+h}
with positive slope.

The following important proposition relates the Palm distribution to
the empirical distribution of the values of g(tk +t) when t, runs
through the set of all upcrossings of the level wu. It states that the
Palm distributions in an ergodic process can actually be observed by

considering the marks over an increasing interval.

PROPOSITION 10.2 If the process {£(t)} 1is ergodic, then with

perahlll ty one
P { (S ) <y ) =1 e “}
0 v j JI ’ ’

#le, €0, T); Flt,  +5.) vy, 3=1, ... n
(10.5) = lim k ' k+v 3j _YJ J ' . .
Toro ﬂﬁk € (0,T) ]

The convergence of the empirical finite~dimensional distributions in

(10.5) to the Palm distributions can be extended to empirical
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distributions of functionals such as the excursion time, i.e., the time
from the upcrossing to the next downcrossing of the same level, or the

maximum in intervals of fixed length following the upcrossing, i.e.

sup §(t, +t).

te1 ¥
For a proof of DProposition 10.2 as well as generalizations and examples,
see Lindgren (1977).

In the introduction we suggested the interpretation that the Palm
probability Pg(nv(t) <y}l gives the distribution of {§(t)} at time
t later than the v~th upcrossing after an arbitrary upcrossing. For

this to make intuitive sense, the Pg—distribution of (nv(t)} should

not depend on v, The following theorem makes this precise.

THECOREM 10.3 The sequence of marks {no(t)}, {nl(t}}, .. 1is station-
ary under the Palm distribution Pg, in the sense that the joint finite~

dimensional Pg—distribution of

i s- r CEE Y ] ) r .= 7 s e ey
Wk+kl( )) nk+kr(5]) j=1 n

is independent of k. In particular, for a fixed t, all the ﬂj(t),
j=0, 1, ..., form a stationary real sequence, and hence have the same

u—

PO distribution, whereas they are non-identically distributed under P.

PROOF We only show that, under Pg, the distribution of nj(t) is the

same as that of nj-l(t)’ A full proof is only notationally more compli-

cated.

i

Put u = E(Nu(O,l)) E(#{tkE (0,1)}. Then

u < "1 .
Polnj(t) <yl = TEM{t €(0,1); r:(tk+j+t) <yl

= (umy "L ,
(10.6) = (uT) E(#{tke (0,T); £’,(tk+j+t) <yh).
Simjlarly,
” u - -1 . .
(10.7) Po{nj_l(t) Syl = (uT) TE(#{t, €(0,T); ey v 1) sy .
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Now take a pair of adjacent points t, and t We see that t, 1is

k+1°
counted in (10.6) if and only if

tk€ (0,T) and g(tk+j +t) y

while tei contributes to (10.7) if and only if

t . € (0,T) and “(tk+1+j-1 +t) < v,
i.e. if and only if

t € (0,T) and 4{ +t) < vy.

k+1 tk+j -

Hence the numbers in (10.6) and (10.7) differ at most by +1 or -1 so

that

u u, 1
[Pofnj(t)sy} —P01nj_l(t)gy}f SL—T——»O as T » «. a

The Slepian model process

We will devote the rest of this chapter to astudy in more detail of the
properties of any of the marks under the Palm distribution, in particu-

lar as the level u gets high. In view of Theorem 10.3 all fnk(t):

have the same Pg—distribution and we pick (qo(t)} as a tymical re-
presentative.

Our tool will be an explicit representation of the Pg—distribution
of no(t) in terms of a simple process, originally introduced by D.
Slepian (1962) and therefore in tnis work termed a Slepiar model process.

The following theorem uses the definition of Palm distributions and

forms the basis for the Slepian representation.

2
THEOREM 10.4 Let u = E(N (1)) = 5% /iy et /2 Then for t # 0,
u y -1
(10.8) Po(no(t) cyb = J {u / zplu,z) p(x]u,z) dz}dx,
x==o z=0

where p(u,z) is the joint density of £(0) and its derivative £°'(0),

and p(xju,z) is the conditional density of £(t) given £(0) = u,
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E'(0) = z. Thus the Pg-distribution of ro(t) is absolutely continuous,

with density

p_l S ozplu,z)pi{x ,u,z)dz.
z=0
. . u .. . )
The n-dimensional Po—dlgtrlbutlon of no(sl), ey ;O(Sn) is ob-
tained by replacing pi(xju,z) by p(xl, ...,xnlu,z), the conditional

density of E(sl), ey i(sn) given £(0) = u, £'(0) = z.

PROOF The one-dimensional form (10.8) is a direct consequence of Lemmas

6.9(iii) and 6.10, since we have assumed that £(0) and £(t) have a

non-singular distribution. We can take 1 (s) = &(s), '(s) = £'(s),
n(s) = ¢(s+t) and, in the same way as in the nroof of Lemma 6.11,
check that

P{z(t) =u, n{t) =v for some t€(0,1); =0

so that

©

I zplu,2)P{&(t) <yl&(0) =u, §'(0) =z}dz
z=0

E(Nu(l))

@

I J zp(u,z)p(x|u,z)dz dx.
X==w z=(

The multivariate version is proved in an analogous way. a

Theorem 10.4 states that the joint density of no(sl), . no(sn)

under Pg is given by

(10.9) % 7 2p(u,2)p(xy, +..y x_|u,2)dz,

z=0
where plx;, ..., xnlu,z) is the conditional density of Elsy)y vy £(s)
given ¢£(0) = u, £'(0) = z. We shall now evaluate (10.9) in order to

obtain the Slepian model process.
1,172 _-u?/2

With = 3 Ay and using the fact that £(0) and ¢£'(0)
are independent and normal with E(£'(0)) = 0, E(g'(O)z) = A, we have
that




' _22/2)2
plu,z) = = e
2

and we can write (10.9) in the form
—22/2A2

T2
(10.10) zio e pxy, ...,xnlu,z)dz.

[ 8]

The covariance matrix of ¢£(0), 7'(0), E(sl), c..s b8 ) is

1 0 r(sl) . r(sn)

! 0 Xz —r'(sl) v -r'(sn)
i

! r(sl) -r'(sl) 1 - r(sn-sl)
! )

]

{”Sn’ cc'(s)  r(sy=s) ... 1

J

From standard properties of conditional normal densities -~ see Rao

(1573), P. 522 — it follows that p(x .,xnlu,z) is an n-variate nor-

17
mal density and that

(10.11) E(&(si)lg(O) =u, £'(0) =z) = ur(s;) - zr‘(si)/)\2
and
(10.12) Cov(&(si), E(Sj)lé(O) =u, '(0) =2z2)

= r(si —sj) - r(si)r(sj) - r'(si)r'(sj)/kz.

The density (10.10) is therefore a mixture of n-variate normal densities,
all with the same covariances (10.12), but with different means (10.11),

and mixed in proportion to the Rayleigh density

2 —22/2A2
(10.13) e , (z > 0).
2

Now we are ready to introduce the Slepian model process. Let ¢ be a

Rayleigh distributed random variable, with density (10.13) and let
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‘v(t), t €R; be a non-statiocnary normal prccess, independent cf

with zero mean, and with the ccvariance function
r . {s,t) = Covi~(s), (tii = ris-ti -r(sjr(t) ~r'(s)r'(t,/-

That this actually is a covariance function follows from (10.12).

DEFINITION 10.5 The process

(10.14) 5u(t) = ur(t) - ",r'(t)/}\2 + (t)

is called a Slepian model process. a

Obviously, conditional on 4 = z, the process (10.14) is normal with
mean and covariances given by the right hand side of (10.11) and (10.12)
respectively, and so its finite-dimensional distributions are given by

the densities (10.10).

THEOREM 10.6 The finite~dimensional Palm distributions of the mark
{no(t)} and thus, by Theorem 10.3, of all marks {nk(t)}, are equal to

the finite-dimensional distributions of the Slepian model process

£,(t) =urit) - cr'(t)/h,y + «(t)

i.e. P‘g{no(sj) €Bj, 3=1, ... n) = PlE,(s,) €By, G =1, .uyni. o

One should note that the height of the level u enters in Qu(t)
only via the function wur(t), while the distributions of ¢ and «(t)
are the same for all wu. This makes it possible to obtain the Palm dis-
tributions for the marks at crossings of any level u by introducing
just one random variable ¢ and one stochastic process {«(t)};. In the
sequel we will use the fact that u enters only through the term ur(t)
to derive convergence theorems for gu(t) as u + =, These are then
translated into the distributional convergence under the Palm distri-
bution Pg, by Theorem 10.6, and thus of the limiting empirical distri-

butions by Proposition 10.2.
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As noted on p. the same reasoning applies to the limiting em-
pirical distributions of certain other functionals. In particular, this
applies to maxima, and therefore it is of interest to examine the
asymptotic properties of maxima in the Slepian model process.

Some simple facts about the model process fiu(t): should be men-
tioned here. From the form of tlie covariance function r_  one may show

that f{«x(t)} is continuously differentiable witn

E{c(t)) = E{-'(t)) = 0
(0% =BG (02 =0
so tnat Pix(u) =.'(0) =0; = 1. Since by = -r"(0) one has
Lo (01 = ur' (0) - r"{0) /Ay ¢ ¥ (0) = 2
so that " is simply the derivative of iu(t) at zero. From Theocrem

10.6 this immediately translates into a distributional result for the

derivative at upcrossings.

COROLLARY 10.7 The Palm distribution of the mean square derivative

ni(O) of a mark at a u-upcrossing does not depend on u, and it has

the Rayleigh density (10.13). L

PROOF Egquality of finite dimensional distributions of course implies
equality of the distributions of the difference ratios (nk(h) -nk(O))/h

and (Eu(h)— EU(O))/h and hence of their mean square limits. o]

The value of ¢ determines the slope of Eu(t) at 0. For large t-
values the dominant term in Eu(t) will be «(t), if r(t) and r'(t)
+0 as t » =, (A sufficient condition for this is that the process
fe(t)} has a spectral density, in which case it is also ergodic.) Then
r{t+s, 1+t) »ri(s-t) as 1 + » g0 that Cu(t) for large t has
asymptotically the same covariance structure as the unconditioned pro-

cess L (t), simply reflecting the fact that the influence of the up-

crossing vanishes.




Excursions above a high level

We now turn to the asymptotic form of the marks at high level crossings.
The lenstn and heijht of an excursion over the high level u will turn

out to be of the order u—l, so we normalize the model process £ (t)

by expanding the scale by a factor u. Before proceeding to details we
give a heuristic argument motivating the precise results to be obtained,

by introducing the expansion

. 2
t "ot
K(G) =1 - 2(1 +0(l))
2u
(10.15)
A.t
AT
£ = - = (L+o(l))

as t/u + 0, which follow from (10.1}), and by noting that «x({t/u) = o(t/u)
as t/u -+ 0. Inserting this into iu(t) and omitting all o-terms we

obtain
(10.16) £, (t/u) ~ ull-ayt?/20%) + ce/u = u + e -ae?/2;
as u ~» » and t is fixed.
The polynomial ¢t - A2t2/2 in (10.16) has its maximum for ¢t = ;/A2
with a maximum value of §2/2A2 and tnerefore we might exwvect that

au(t) has a maximur of the order u + % 52/2)2. Hence the probability

that the maximum exceeds u + v/u should be approximately

P{LZ/ZA2 >vi =

The following theorem justifies the approximations made above.

THEQREM 10.8 Suppose r satisfies (10.2) and r(t) - 0 as t » o,

Then for each 1t > 0,

Pl sup ¢ (t) »u-#%} »eV as u +w

Qctet

’

i.e. the normalized height of the excursion of £ (t) over u is

asymptotically exponential.




PROOF We first prove that the maximum of iu(t) OCCUrs near zero.

Choose a function 43(u) * © as u - = such that 3(u)/u - 0 and

5%(u)/u ~ =. Then

(10.17) p{ sup S.{t)y >ur - 0,
8 (u) /ugt<t

since the probability is at most

pf{ sup (5,(8) —ur(e) + sup ur(t) >u;
§(u) /usteT 3(u) /ust<t
< P{ sup (—;r'(t)/‘A2 +x(t)) >u(l - sup r{c))}.
O<tst

$(u) fuster

Here

sup (—t;r'(t)/,'k.2 +x(t))
O<t<r

is a proper (i.e. finite valued) random variable, and (since 1 - r(t)

xzcz/z + o(t?) as t + 0, and the joint distribution of £(0) and

£{t) 1is nonsingular for all t so that r(t) <1 for t ¢ 0)
2

1 - r{t) > Kt for 0 <t < 1, some K depending on 7, so that
2
ul{l - sup r{(t)) > Ku é—l;i +
8 (u) fuste<t u

which implies (10.17).

In view of (10.17) we now need only show that

P{ sup é“(t) >u-+§} = P{ sup u(iu(t/u) —u) v - e ¥
0<t<d(u)/u 0<st<§ (u)

for v > 0. By (10.15)

(10.18) u(&u(t/u) ~u)

-uz(l -r{t/u)) - ;ur'(t/u)/*2 + ux (t/uy =

2 . c (t/u]
-xzt /2 + (L+4o(l)) + 7t(l +o0(l)) » t 7T

uniformly for 0 < t < é(u) as u » =. Since -« (t): has a.s. contin-

uously differentiable sample paths with «'(0) = 0, and *(uj/u * G,

sSup x{t/u)

~+ 0 (a.s8.) as u =+ =,
0<t<s(u) /U




This implies that the maximum of u(iu(t/u) -u) 1is asymptotically de-

termined by the nmaximum of -%2t2/2 + 7t and that

lim P? sup 5 (=) >u +¥} = P€5up(->2t2/2 +7t) >v) = P€§2/2»2> v
u=e QO<te- ¢ < t
-v
= e
as was to be shown. o

As mentioned above, distributional results and limits for the model
process {Eu(t)} carry over to similar results and limits for marks
nk(t) = Sty +t), i.e. for the ergodic behaviour of the original process
{(t)} after t,.
In particular Theorem 10.8 has the corollary that the limiting em-

pirical distribution of the normalized maxima after upcrossings of a

level u is approximately exponential for large values of wu, i.e.

#(tk €(0,T); sup SH:k
lim 0stst + eV
Iow Hie, €(0,T7

N v
+t) >u+—;
u

as U > o, a.8.

This clarifies the observation in the beginning of this section,
that an excursion over the high level u also exceeds the level
u - lf%%g with probability elog P pP-

It should be noted here, even if not formally proved, that the ex-
cursions emerging from different upcrossings are asymptotically inde-
pendent. This explains the asymptotic independence of extinctions of
crogsings with increasing levels.

The following theorem follows from (10.18).

THEOREM 10.9 Suppose r satisfies (10.2) and r(t) - 0 as t - =
Then with probability one the normalized model process
Eu(t) = u(Cu(t/u) -u)

tends uniformly for 't < 1 to a parabola

fm(t) = —)zcz/z + Lt




in the sense that, with probability cne,

sup B (t) =T _(t); » 0
leict

This theorem throws some light upon the discrete approximation used
in the proof of the maximum and Poisson theorems in previous chapters.
The choice of spacing in the discrete grid, g, appeared there to be
chosen for purely technical reasons. Theorem 10.9 shows why it works.
By the theorem the natural time scale for excursions over the high

-1 1

level u is u 7, so the spacing g = o{u”") of the g-grid catches

high maxima with an increasing number of grid points.




CHAPTER 11

MAXIMA AND MINIMA AND EXTREMAL THEQOPY FOR DEPENDENT =ROCESSES

The main chread in the previous chapters has been the extension of ex-
tremal results for sequences of independent random variables, to depen-
dent variables and to continuous time processes. Trivially, extremes in
mutually independent processes are also independent, and we shall see
that this holds asymptotically for normal processes even when they are
highly correlated.

However, we shall first consider the joint distribution of maxima and
minima in one process. (Since minima for £(t) are maxima for -:I(t),
this can in fact be regarded as a special case of dependence, namely be-

tween {:z(t); and [-£(t);.)

Maximum and minimum

Suppose £1v 52, ... 1s a stationary sequence of independent random va-

riables with

— z v ; ~2
P{gl >un} o P{&l <-vpl a

as n » =, so that

- ) _ -
P{max £, <u_} > e T, P{min ¢, z-v } »e .
1<i<n n l<i<n
Then clearly
. ~ b n
P{-v_< min § ¢ max & <u.} = P{ vy &y sut

1<i<n * T l<ign

L}

(1 - p{g, >u b - plgy <~v )"

(1 - 1%2 +on It - eTe Y,

#

i.e. maximum and minimum are asymptotically independent.

For a standardized stationary normal process {£(t)} and {-£(t)}

have the same distribution. Writing




-7 3~

m(T) = inf<f(s); 0<s<T:,

clearly m(T) = -sup:-3(s); 028 <7T:, and nence =n~(T) has the same
asymptotic behaviour as -M(T). If {3(t): satisfies the hypctheses cf

Theorem 7.6,

-

Pm(T) »-v: ~ e
as T, v - = ana T. - 3 > 0 for

1 172 _-vin2
v 37 AZ e .

It follows, under the hypotheses of Theorem 7.8, that

.

P{a (m(T) ~bg) <xr »~ 1 - exp (~e¥)

with the same normalizations as for maxima, i.e.

1/2

a

T (2 log T)

2 loq(Aé/z/Zﬁ)

(2 lho)l/ +

b 22 .
(2 log T)1/?

T

It was shown by Berman (1971 a) that under no further assumptions
m(T) and M(T) are asymptotically independent as in the case of inde-
pendent sequences studied above. We shall now prove this result.

With the same notation and technique as in Chapter 7, we let N and

Nl_(lq) be the number of u-upcrossings by the process {g(f); 0<t <h;
and the sequence {£(jq); 0 <jg<h}, and define similarly D_, and
ng) to be the number of dZowuecrossings of the level -v. We first ob-

serve that if, for h =1,

2
1 1/2 -u~/2
Byl = 37 2 e '

1‘
]

2
L = _ 1 ,1/2 -y©,2
P T ED ) = ap Ay e Y
and u, v * » g0 that Ty - 1t > 0

and Tv = ¢ > 0, then we have
u~ v and

(11.1) u - v~-]£9-—"—11

u ’
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Parts (i1} and (iii) follow as in Lemma 7.4 and the details aroe rot

repeated nere.

The following two lemmas give tne asymptotic independence ©f both max-

ima and minima over the separat: Ik-lntervals.
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P 3{0) »u, Tuyg) c-v: = U ixiPriiyy, c=v TG, =x:dx

- . . _v_-r{'no:
(11.3) = om iy LT XIS gy,
U 4 2

since, conditicnal on Z(0) = x, 7(ig) 1s normal witn mean xr:!}qg;

and variance 1 - rz(jq). Now, choose h, - 0 such that G < r(t) -

for 0 < 't ¢ hpy, whics is possible by (7.1). If O < jg

[ B
Y
jo

then
/ 2
(=v -xx(3jq) /71 -7 (jgq) 2 -v,
for u, v > 0, so that (11.5) is bounded by

Muld(v)

B (x)d(=vidx = (L =3(u))(l-9%(vi) ~ T

c 8

Together with (11.4) and (11.5) this shows that

n? (u) ¢ (v)
0 < P{ max £(jg) -u, min £(jq) <-v} ¢ =- lu)

T 0<jgch 0<jg<h q uv
- 1, S(u)d(v) , 1 , i _ ' ‘
= h (b +v) quqv (b+v) = o(l) (u+v),

since ®(u) Mw)/(u+3) = Q(uy/{u+v)) = 0, and g can be chosen to

make quqgv - 0 arbitrarily slowly.

THEOREM 11.5 Let u =u, - » and v =v, »® as T + o, in such a

T T
way that
S T V7 S
L P N T ’
N N V2 e-v2/2 o
n 2 o °

Suppose r(t) satisfies (7.1) and either (7.2) or the weaker (11.3).

Then

P{-v <m(T) <M(T) <u} - e 9T as T o,

and hence

P(aT(m(T) -bg) 2 x, ap (M(T) =by) <yl » (1 -exp(—ex))exp(—e°y)

1/2

with a; = (2 log T)1/2, by = (2 log 7'+ 103(‘-;/‘/2*')/(2 log ) V/2.

"

i




PROOF By Lemma ll.. f1:; and {iii), and Lemma :l.! 'i: and 7.1, we naje

iim sup PY=v cminh) - Minhc 2L = BUoevoomih) 2 MR, 4

T o+ 0w

10- .-,
o ’

for arbitrary = > 0, and hence
. ; " . n p .
(11.6) Pi-v - -m(nh) 2M(nhl Zu: - P =y ~m{hy ML 24 - G

m

as n - ~r. Furthermcre, by Lemma 11.4,

M-y s m(ny “M(h) cur = (1l -Pimth) 2 -v: -2 ML, ~u; +ol. TSRS
arguing as in the proof of Theorem 7.6, the result now follows from

Lemma 7.3, using n(v +u) ~ I(u +u) - z ;T. =]

h

This theorem of course has similar ramifications as the maximum thec-
rem, Theorem 7.6, but before stating them we give a simple corollary

about the absolute maximum of 7 (t).

COROLLARY 11.6 If u + », T = t/u, then

P{ sup |r(t)}| <u; - eﬁzT,
0<t<T
and furthermore
P{aT( sup & (t)] ~bp) 2x+ log 2} - exp(—e_x). o

O0<t<T
As for the maximum alone, it is now easy to prove asymptotic indepen-
dence of maxima and minima over several disjoint intervals with lengths
proportional to T. As a consequence one has a Poisson convergence theo-
rem for the two point processes of upcrossings of u and downcrossings
of =-v, the limiting Poisson processes being indenendent. Furthermore,

the point process of downcrossings of several low levels convcrges to a
point process with Poisson components obtained by successive binomial
thinning, as in Theorem 8.6, and these downcrossings processes are as-

ymptotically independent of the upcrossings processes. Of course, the

——————_ R s A T S
s T -




~

entire pcint process ~f local minima, consi:dered in Thecrem 9.4, is

also asymptotically independent of tne pcint process cf normallzed lo-

o]

cal minima.

Zxtreme values and crossings for dependent processes

One remarkable feature of dependent ~:rm:. processes is that, regardless
of how hizh the correlation —short of perfect correlation —the number of
high level ~rossings in the different processes are asymptotically inde-
pendent, 2s shewn in Lindgren (1974;. This shall now be proved, 2qain by

means of the important Lemma 3.2.

Let {gl{t);, ey fip(t); be jointly normal processes with zero
means, variances one and covariance functions rk{*i = Cov(ik(t),

£ {t +71)). We shall assume that they are jointly stationary, i.e.

Cov(gk(t), gg(t +71)) does not depend on 1, and we write

(7} = Cov(g (t), &, (t+71))

T2 2

for the creczz-20varia~ze function. Suppose further that each r, satis-

fies (7.1), possibly with different )k's, i.e.

(11.7) £ (t) = 1 - i t2/2 + o(t?d), ¢t » 0,

k 2k

and that

rk(t} logt + 0O,
(11.8)
rkz(t) logt - 0O, as t - »,

for 1 2 k, 2 7 p. To exclude the possibility that S (t) £ e, (¢t +tg)

for some k # 2, and some choice of to and + or -, we assume that

(11.9) max sup 1rk2(t)l < 1.
k#g t

However, we note here that if inft rkz(t) = ~1 for some k ¢ ¢,
there is a to such that rkz(to)
= -gz(t +c0). A maximum in ¢

= -1, which means that {k(t)

7(t) is therefore a minimum in Ek(t).

e b TN e
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and as was shown in the first section of this chapter, meaxima and mini-
ma are asymptotically independent. In fact, with some increase in the
complexity of proof, condition (li.9) can ke relaxed to

max,  , Su e
AXiey SUPy Ty
Define

(L) < i.

Mk(T) = supfik(t); 0<t<T;, k=1, ...,p

and let u = uk(T) pe levels such that

2
Tu, = L v, e-uk/2 + 1, >0
k 27 2k k

as T - ». Write . = min(ul, ...,up}.

To prove asymptotic independence of the Mk(T) we approximate by the
maxima over separated intervals Ij’ j=1, ...,n, with n = [T/h] for
h fixed, and then replace the continuous maxima by the maxima of the
samplea processes to obtain asymptotical independence cf maxima cver
differert intervals., We will only briefly point out the changes which
have to be made in previous arguments. The main new argument to be used

here concerns the maxima of Ek(t), k=1, ..., p over 5.2 fixed inter-

&

val, I, say.
We first state the asymptotic independence of maxima over disjoint

intervals.

LEMMA 11.7 If r satisfy (11.7)-(11.9) for 1 < k, 2 - »,

T’ Tka
and if Tuk > T > 0, then for h > 0 and n = [T/h],

PiM (ph) cu., k=1, ..., p} ~ PU{M_(h) <u,, k=1, ...,p} » O.

kl
PROOF This corresponds to (l11.6) in the proof of Theorem 1l1.5, and is
proved by similar means. It is only the relation

n

(11.10) P{Z, (3q) <u,, jqerglIr, k=1, ..., p} -

n
- rzlp{gk(jq) fup, Jg€I,, k=1, «v..p} ~ 0,

SN —e e — e s . m———————— ——— .




corresponding to Lemma 11.3 {i/, that nas to ze given a different oroof.

Identifying {L, ...,in in Lemma 3.2 with i;qu;, ...,ic(;q;,
n L
jg € U Ir’ ana Ty oo o analogously, but with variakles from diffe-
r=1 ‘
rent I _-intervals independenc, (2.4 <zives, since sup rk?(t: [
) n
,Ptik(jq) I 33 € U Ir, k=1, ...,p:; -
r=}
- T i f3gy cu,, Jg€I., k=1, , D
r=1 ¥ k i
ol . -u“/ 01 + rkrzl—J)ql }
(11.11) 2 K Z Lo tti-g)q) e +
k=1 i<j
2 o
v -0l + rkl((l-J)q) )
+ K Z z ‘rkl((i ~jrq) ., e

l<k#l<p i<j
- * . - . .
where 3% as before indicates that the sum is taken over i, 3 such

-

that ig and jgq belong to different Ir' Since both rk(t) logt ~ 0,
- ; ) y in L 7. ii),
rkl(t) log t 0 and sup!rkz(tj‘ 1 we can, as i emma 1 (i)
conclude that both sums in (11.11) tend to zero. a
LEMMA 11.8 If r

r satisfy (11.7) and (11.9), for 1 < k, 2 < p,

k’ "kt
then
(1) P{Mk(h) > Uy, Mz(h) >u2} = o(uk +uy) for k # ¢,
and
P p
(ii) P{Mk(h) SV k=1, ...,pl =1 - kilP(Mk(h) >uk} + o(kilpk).

PROOF (i) As in the proof of Lemma 11.4 it is enough to prove that, if

q = 0 so that u 9~ g - 0 sufficiently slowly,

P{ max ¢ (jq) >u,_, max &,(jq) ~u,} = olu, +u,).
Oﬁquh k k Ogquh L |3 k L

8ince, for r = k, &,

P{ max £_(jq) >u_} = oty )
0<3ig<h r r r

it clearly suffices to prove that

T R L e TSI WS




RN
(11.12) P max ik(;ql S max 3 ocdy -
Q- 3jg-h Q73gon
- Pi max 5, (3q) -4 Promax .0Jg, cu.c = ol vl
'k z s N i { 14
G73q-h l-ige
. . e - P »l An€s rmeet v

To estimate the difference we ajairn use Lemma 3.2 with defined oy
s
Y : PO . '

Lo L, and Lyqv ard obtained by taking ., identically zero.

Elementary calculation show that the difference 15 11,12, eguzlis
P max 7, {ig) - Uy max iz(jq) Zu,co-
07 39h 0z3gzh '

- B0 max 7, (3g) :ukyP’ max f,'39) 3¢
0:3qzh 923qzh

which by Lemma 3.2 is bounded in modulus by

(i1.13) == z !rk,((i-j)q);(l—rii)(u-;;q“‘wz .
6<ig, jgzh 77 ’

VA NI EEI
- e B
with u = min(uk, ug).
Now, by (11.9), sup;rky(t); =1 -4 for some ¢ - 0, and using tnis,

we can pound (11.13) by

Khzq 2 exp(-uz/(l +1-4))

= 2 ) L ~2 2 a2ty o
= Kh b;::;(uq) u” exp(-u 373 '5))‘“k +ug)
= ol +uy)
if ug » 0 sufficiently slowly, since "o(u)/(uk + ., is bounded.

(1) This follows immediately from part (i) and the inequality

p
z P{M_(h) »~u } - Z P{M, (h) »u_, M,(h) »u,}
ooyl M T ktap Mg x My 2
P 0 {M, (h) 1 z {M,_ (h) }
< u M ~u Zz PiM >u, b a
k=1 K AR S k

Reasoning as in the proof of Theorem 7.6, and using Lemma l1.7 and

Lemma 11.8 (ii) we get the following result.




THEOREM 11.9 Let 4 = uk’T) - * as T - ®, 3G trhat T.K
=T = v ex*(-uz/Z} - T - T, 1 kK - o, ard s.ignaosze knat r. zand
PRERY St k SR - <
rkz{t; satisfy ‘1L.7;~/11.9 Thern
D
PIM (T) “u,, k=1, ..., p: ~ expi- 2 7 )
k k
k=1
as T » =, =

Under the same conditions as in Theorem l1.9, the time-normalized
point nrocesses of uk—upcrossings tend jointly in distribution to g

independent Poisson processes with intensities ) The precise fcrmula-

tion of the theorem, and its proof, is left to the reader.

We end this chapter with an example which gives an illustration to
the extraordinary character of extremes in normal processes.

Let {;(t);, and ‘n(t):. be independent standardized normal proces-

ses whose covariance functions r_ and r_ satisfy (7.1) and (7.2},

3

let Cpr k=1, ..., p, satisfying = -1, and ¢, #* ¢ k + ., be

k 2’
constants, and define

B (t) = e il + <1—ci>l/2—‘<t).

Then the processes {k(t), k=1, ..., p are jointly normal and their co-

variance functions rk(t) and crosscovariance functions

g (8) = gee,r (6) + (l—ci)l/z(l-ci)l/zrn(t)

satisfy (11.7)-(11.9). Thus, even though El(t), e Ep(t) are linear-

ly dependent, their maxima are asymptotically independent.

We can illustrate this geometrically by representing (7(t), n(t))
by a point moving randomly in the plane. The upcrossings of a level Uy
by £x (t)  then correspond to outcrossings of the line

2,1/2

Cpx + (1 —ck) y = U

by (z(t), n(t)), as illustrated in the following diagram.
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CHARPTER 12

MAXIMA AND CRGSSINGS CF NON-DIFFERPENTIASBLE NTRMAL PRCCESSES

The basic assumpticn oI tne grevicus chasters nas Zeern «nat the cavari-
ance function ri{-; of the stationary ncrmal srocess It ras an ex-

pansion

r{(t) = 1 = 72/2 + o(f2> as - - 0.

,“2
In this chapter we shall consider the more general class of covariance

functions which have the expansicn

(12.1) r(t) =1 -¢C 1  +o(it.% as 1 -0,

where 1 1is a constant, 0 - 1 7 2, and C 1is a positive constant.
Tnis includes covariances of the form exp(- T;l), the case = = 1
being that of the Ornstein-Uhlenbeck process. Note that we may take

1 = 2 1in (12.1) so that all results of this chapter are indeed true
also for the reqular case previously studied; cf. Theorem 12.9.

If 2 < 2 we cannot exp=ct a Poisson result to hold for the upcross-
ings of a high level, since r 1is then not twice differentiable, imply-
ing that >2 = =, and hence the mean number of crossings of any level
in any interval is infinite by Rice’s formula. Furthermore, it can be
shown that at every point t where a crossing occurs, there are an un-
countable number of crossings in every neigbourhood of t. However, it
is certainly possible for the maximum M(T) to have a limiting distri-
bution. The point is that while upcrossings may be infinite in number,
(12.1) is, as noted in Chapter 6, p. 8, sufficient to guarantee con-
tinuity of the sample paths of the process, and thus ensure that M(T)
is well defined and finite.

We shall in fact show that aT(M(T) —bT) has a limiting double ex-

ponential distribution if the normalizing constants are




P .

- /2
i, = (2 1mqg T
&
(12.2 . 4
bT = (2 log TJL/Z + = 73 = 7 Lol leg T

t2 log T:

Lty ygq

+ 1og(C

where Hl is a certairn strictly positive constant.

This remarkable result was first cobtained by Pickands (19¢%,, al-
though his procfs were not guite complete. Complements and externsicons
have ceen given by Berran (1971bj, Qualls and Watanabe (1972), and
Lindgren, de Marg, and Roctzé&n (1975). The method of Pickands has some
particularly interesting features, in that it uses a generalized nction
of upcrossings which makes it possible to obtain a Poisson type result
also for =+ < 2.

Specifically, Pickands considers what he terms Z-uzzrszs<inzc. Given
¢ . 0, the function f£f(t) 1is said to have an c-upcrossing of the level
u at t4 if f(t) £ u for all t € (ty =€.ty), and, for ail -~ - O,
f(t) » u for some ¢t € (to,t0 +n). Clearly, this is equivalent to re-
quiring that is has a (non-strict or strict) upcrossing there, and
furthermore £(t) ¢ u for all t in (tO = &,tg). An E-upcrossing is
always an upcrossing, while obviously an upcrossing need not be an =-
upcrossing.

Clearly, the number of z-upcrossings in, say, a unit interval, is
bounded (by 1l/¢) and hence certainly has a finite mean. Even if this
mean cannot be calculated as easily as the mean number of ordinary up-
crossings, its limiting form for large u has a simple relation to the
extremal results for M(T). In particular, as we shall see, it does not
depend on the ¢ chosen.

The main complication in the derivation of this result, as compared
to the case 4 = 2, concerns the tail distribution of M(h) for h
fixed, which cannot be approximated with the tail distribution of the

simple cosine process if 2 < 2,
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Now, let B > 0 and introduce the event

A= U { max clkop) o5 (28(p +1) %),
p=0 0<k<2P-1 E(z(k,p)"™)

If B > log 2, Boole’'s inequality, together with (12.5), implies
© Zp-l
pa) ¢ 1t p{——=Bl s (2g(p 41t/

p=0 k=0 E(z(k,p)?

<z 2pe--B(p+l) - e_s/(l _e—(B— 1092))’
p=0

so that if B8 > 2 log2, then

(12.6) P(A) < 4e”F.

But for B < 21log2 this holds trivially (since P(A) < 1) and we can
therefore use (12.6) for all values of B8 > 0.
Next, note that on the complementary event A*, all the inequalities

2)1/2

|z, p)| < Elz(k,p) . (28(p+10) /%

hold for p=0,1, ...; k =0,1, ..., 2P -1, and that (12.3) implies
that

E(z(k,p) %) < ¢ 27 (PHDI,

Thus, by (12.4) we conclude that on A%,

le(t) —gq0)] < £ M2 P/ 2055500y /2 o S 8C

, Say,
p=0

and that consequently, by (12.6),

P{ sup [£(t) ~£(0) | < /£ } ¢ 4e”B,
0<t<l a

The conclusion of the lemma now follows by choosing B8 = caxz/c, since

P{ sup £(t) >x} < P{ sup |&(t) =£(0)| >x/2} + P{£(0) >x/2}

Oct<l O<t<l

2
-c x°/C 2 2
<de © + % o™X /807

-ty ——— o e o e e o e - =

L
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with this result out of the way we return to the process {£(t)}
with covariance function r(t). When considering the distribution of
continuous or discrete maxima like sup £(t) and max £(jg) for

O<t<h 0<jqgch

small values of h, it is natural to condition on the value of ¢£(0).
In fact, the local behaviour (12.1) of r(t) is reflected in the local
variation of §£(t) around £(0). For normal processes this involves no
difficulty of definition if one considers £(t) only at a finite number
of points, say t = tj, j=1, ..., n, since conditional probabilities

are then defined in terms of ratios of density functions (cf. Chapter 6

p. 16). Thus we can write, with tg = 0,

u
P{ max g(tj) <ul = [ ${x)P{ max g(tj) <ulg(0) =x} dx,

j=0,....n o j=l,...,n
where the conditional probability can be expressed by means of a (condi-
tional) normal density function (cf. Chapter 10 p. 66). In particular the
conditional probability is determined by conditional means and covari-

ances,

n

’

For maxima over a real interval we have, e.g. with ¢t. = hj2'

ij=0,...,2%

P{ sup ¢g(t) <u} = lim P{max 5(tj) <u},

O<t< N+ t.

J

which by dominated convergence equals

u
J ¢(x) lim P{max g(t.) cul[g(0) =x} dx
- N+ t. J

]
Now, if the conditional means and covariances of £(t) given £(0)

are such that the normal process they define is continuous, we define

P{ sup ¢(t) cu|g(0) =x}
O<t<u

to be the probability that, in a continuous normal process with mean
E(g(t) [€(0) =x) and covariance function Cov{(f(s).£(t)]|£(0) =x), the

maximum does not exceed u. Then clearly




lim P{max §(t.) <uj&(0) =x} = P{ sup £(t) <ulg(0) =x}.
nee oty ] 0<t<h

In this case we have, by dominated convergence,

u
P{ sup £(t) <ui = [ o(x)P{ sup £(t) =ulZ(0) =x} dx.
O0<t<h - O0<tc<h

In the applications below, the conditional distributions define a con-
tinuous process, and we shall without further comment use relations
like this.

To obtain non-trivial limits as u + = we introduce the rescaled

process
Eu(t) = u(s£(tg) -u),

where we shall let g tend to zero as u -+ », Here we have to be a
little more specific about this convergence than in Chapter 7, and shall

assume that uz/aq + a > 0, and let a tend to zero at a later stage.

LEMMA 12.2 Suppose u +» =, q - 0 so that u2/aq + a > 0. Then

(i) the conditional distributions of gu(t) given that gu(O) = X,

are normal with

E(5,(8)5,(0) =x) = x - ca®[t]% (1 +0(1)),

Cov(g, (s), £ (t)[E (0) =x) = ca®(|s]® +|t[® -1t -sI%) + o(D)
where for fixed x the o(l) are uniform for max(|s|,|t!) < tye for
all t0 > 0,

(ii) for all ty - 0 there is a constant K, not depending on a or

x, such that, for (si{,{t| ¢ tg,
[+ 3 a
Var (% (s) -5u(t)l£u<0) =x) < Ka |t~s]| .

PROOF (i) Since the process (Eu(t)} is normal with mean -u2 and

covariance function

Cov(t (8), % (t)) = ur((t-s)q)
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we obtain (see e.g. Rao (1973), p. 522) that the conditional distribu-

tions are normal with

E(g,(t) lf,u(O) =x)

]
I
4

+ uzr(tq) . —Lz(x +u2)
u

= -2+ (1 -cq®fe]* +olg®el®) (x +ud)
= x - (x +u2)(Cq°‘5ti°‘+o(q“!t|°’))
= x - ca®lt|* (1 +o(1)),

since u2qm »a% >0 and x is fixed. Furthermore,

Covig (8), £ (8) [5,(0) =x) = v’ (r((t-5)q) ~r(sqr(tq)

= wf(1-cq®)t-s]%~(1-cq®s!™ (1 -cq®lel® +o(g®))
= ca®(Is|%+]ef% -t -s|™ + o(1),
uniformly for max([s|,|t]) < to-
(ii) Since Cu(s) - £,(t) and Eu(O) are normal with variances
2u2(1 -r{((t-slq)) and u2, respectively, and covariance uz(r(tq)

- r(sq)), we have, for some constant K,

Var(f;u(s) - g, |gu(0) =X)

2u2(l—r((t—s)q)) - uz(r(tq) -r(sq))2

ZCuzqa{t -sia+o(u2qa|t -st%

1A

a 03
Ka’ |t ~s]|,

A

for fs!,[t]gto. o

The first step in the derivation of the tail distribution of M(h) =
sup{£(t); O<t<h} 4is to consider the maximum taken over a fixed number

of points, 0, g, ..., (n-1)q.

LEMMA 12.3 For each C there is a constant hu(n,a) < = guch that,
2/

if u +»», q +0, u <Jlq+a > 0, then

1
Yy P{ max 4(jq) >u} - cl/e H (n,a).
0<3<n

—_— i e - ————— -
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PROOF We have

P{ max &£(jg) >u} = P{ max & (3) >0}
0<i<n 0<j<n

= p{£_(0) >0} + P{£ _(0) <0, max £ (3) >0},
u u 0<j<n

where P{Eu(O) >0} = P{£(0) >u} =1 - $(u) ~ ¢(u)/u. Since furthermore

gu(O) is normal with mean —u2 and variance u2, we have

P{£ (0) <0, max £ (3) >0}
u - 0<j<n U

0
(12.7) = 7 2 ou+¥) P{ max g, (j) >0]g, (0) =x}dx
-0 0<j<n

[

_ $u) ? e-x-xz/zu2

5 P{ max (g (3) -x) >—x|£u(0) =x}dx.

- 0<j<n

By Lemma 12.2 (i), for any fixed x,

E(E,(3) =x|£,(0) =x) » -ca®|j]%,

Cov(E (i) =%, £ () -x]E (0) =x) » ca® (1] +|5[% - [i-3]%)

as q * 0. Since limits of covariances are covariances, one can define
a sequence of normal r.v.'s, Ya(j), j=1, 2, ... with mean and covari-

ances depending on a = lim quz/a,

E(Y,(3)) = -ca®[3]%,
Cov(¥_(1), Y () = ca® (|1 +[3]% - [1-3]%).

Now convergence of moments implies convergence in distribution for
jointly normal r.v.’s (as can easily be seen, e.g. using characteristic
functions). The boundary of the set { max Ya(j) >-x} 1is contained in
0<j<n
the set
n-1
U {Y,(3) =-x}
i=1
and since the one-dimensional distributions of Ya(l), ...,Ya(n -1)

are all non~degenerate, { max Ya(j) >=-x} is a.s. a continuity set,
C<j<n
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and it follows that

P{ max (£,(3) =x) >—x|£u(0) =x} -~ P{ max Y, (3) >~x}.
0<j<n 0<j<n

To be able to use the dominated convergence theorem in (12.7) we note

that, by Lemma 12.2 (i),

P{ max (£u(j) - X) >-xl£u(0) =x}

0<j<n
T I
< I Pp{g (3) ~x>-x{g (0) =x]
j=1 u u
f n(l -d>(c'-c”x)) 5 n Q(c'-clvx)

c'-c"x
for come constants c¢', c" > 0, This shows that the convergence in

(12.7) is dominated, and we obtain
1 P{ max £(jgq) >u}l » 1 + ? e *P{ max Y (3) >-x}dx < =
$(w)/u 0<3j<n —o 0<j<n '

which proves the existence and finiteness of the constant Ha(n,a).

For future use we note the following expression for the constant

Hu(nla) H

0
(12.8) H (n,a) = c'1/°(1 + [ e *p({ max Y_(3) >—x}dx> )
¢ - 0<j<n a

LEMMA 12.4 Suppose u » «», q = 0, uz/“q +a > 0, and take h such

that sup r(t) <1 for all ¢ > 0., Then, for each C,
Cftfh

(1) there is a constant Ha(a) < » such that

Ha(n,a)

na -+ Hu(a) as n + o,

and

1 . 1/a
P{ max ¢£(jgq) >u} - hC H (a),
u§:°¢(u)/u 0<jq<h o

(11) Hu(ao) > 0 for some a, > 0.
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PROOF (i) Let n be a fixed integer, write m = (h/nql, and
B = { max £(3q) >u}.
rn<j<(r+l)n
Then
m=-1 m
P( U B) <Pl max ¢£(jq) >u} SP(uU B,

r=0

0<igs<h

where, by Lemma 12.3,

m
P( U

r=0

since 1/q ~

r=0

Be) £ m+1R(By) ~ (me1y S Loy (o,

~ Eg—ig LAC)] cl/a y (n,a)
u a

na

uz/a/a by assumption.

Hence

1/a Hy(n,a)

(12.9) lim sup —773—————— P{ max £(jq) >u} <hc vy < »

U ¢(u)/u  0<jg<h
Furthermore

m-1 m-1

P(U B ) > I pP(B) - T P(Br B )
r=0 r=0 r+s
m-1
nP(Bo) -m I (B, N B_)
r=1
so that
m-1

(12.10) lim inf —d —— p(y ) » h cl/0 Hina) _

U+ ¢p(u/u =0 T ha

m-1
- lim sup ——7——————— I P(B, NB)
u-+® 2 a¢(u)/ r=1 0
= h ¢}/ H(n,a) say.
na
We shall now show that
m-1
(12.11) P = lim sup —27——————- b P(BO NB)~+0 as n + o,
u+e %o (w)/u p=1 T

By Boole’s inequality and stationarity
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m-1
n =
m il P(B0 Br)

m=1
m I P( U ] {£(iq) >u, £(jq) >ul)
r=]1 0<i<n rn<j<(r+l)n

(12.12)
n-1 mn

m I T P{g(iqg) >u, &£(jgq) >ul
i=0 j=n

A

m
3

tA
[ B~

3 P{E(O) >u, £(3jg) >u}l
1

mn
+mn . P{£(0) >u, £(jgq) >ul.
j=n+l
To estimate these sums we have to use different techniques for small and

large values of jg. Let ¢ > 0 be such that
121-1r(t) > 5 1t1®  for Itl £ s.

Assume jq < e, and write r = r(jq). Since the conditional distribu-
tion of ¢g(jg) given ¢£(0) = x, is normal with mean rx and variance

1l - rz,

P{£(0) >u, £(iq) >u} = f ¢(X)P{E£(3q) >ul£(0) =x}dx
u

S oo (x) (1 ~0(XE) ) ax
u

1-x
(12.13) = [-(l"‘¢ {(x)) (1-@ (_2:&)) ]:=u + f(l_@(x)) r ¢( u-=Xr ydx
1-x2 u J1ie?2 /122
< (1=0(u)) (1= (u/ Ihr)) + f(l o (u)) —E— ¢ (UXL) gy
1-r2  /1-r

= 2(1-0 (u) (1~¢ (w/ 355)) ¢ 2 . o(u/fT__))

Here,
1-r -r( 0 a =2

(12.14) 3= Ti??%%% 2§ 13a1% 2 k3%,

for some constant K > 0, and thus if nq < €,
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i P{g(0) >u, £(Jjq) >u}

3
uwers
—

- "-‘&‘—’(1 - o ki%a%))

(1Y
[ 8]
]
e
[

(12.15) N
~2h ol L g - 0/k3%a%)

A
=
A

.
lx
S
™

—
j (1 -9ski%a%))
for some constant K'. Since 1 - ¢(x) < ¢(x)/x the sum

i1 - (/ki%%))
1l

™8

b

is convergent, and since ng - 0 as u » « (n fixed)

e

FP{E(0) >u, &(iq) >u}l = 0(l/n)

(12.16) lim sup -77#— m
j=1

g->® u °¢(u)/u j
as n + o,
For the second sum in (12.12) we get, again using (12.13),
[e/ql

mn I P{£(0) >u, £(jq) >u}
j=n+l

<« K'h uz/“¢(u)
- q“2/01 u

I (1-¢(/k5%%).
j=n+l

(12.17)

where the sum is convergent. For terms with ig > € we use the esti-

mate from Lemma 3.2,

2 .
PLE(O) >u, £(3@) >ul < (L-d(u)? + ke /ArIrGa D)

which implies that

mn
mn I P{£(0) >u, £(jq) >u}
j=le/ql+1
2 .
< (3)2(1_0(‘1))24,& T e Y /(l+|r(Jq)l)_

e<jqch

Since 6 = sup |r(t)| < 1, this is bounded by
e<t<h
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2 2 2
Boa-eq)? + K o /(%0
q q
2
1-§
2/a —-Ll-—._.——
- u \?(u) (K 2;; s e 2 1+8 o(1))
u q
2/
(12.18) =290 .oy as u e,
since u/(uZ/an) ~ u1+2/a/a2 and 6 < 1,

Together, (12.17) and (12.18) imply that

1 mn
lim sup e M z
u+e  u" "9 (u)/u

P{g(0) >u, £(jq) >u}
j=n+l

@«

=K' I (1-¢6(/%%%) » 0, n+ =,

j=n+l
and combining this with (12.16) and (12.12) we obtain (12.11).

Thus we have shown that

1/a .Ha(n,a)

. 1 .
h C - p_ < lim inf —>—=—— P{ max £(jq) >u}
na n wre  u/ % (u)/u 0<jg<h
< lim sup —§7E—£———— p{ max £(jq) >u}
u+e U

¢ (u)/u  0<jgq<h

H (n,a)
h Cl/a ']

A

na
where on * 0 as n » =, Since Ha(n,a) <

for all n, and the

lim inf and 1lim sup do not depend on n, this implies the existence
of
H (n,a)
lim 2——— = H_(a),
Nooo na [+ 3

which is then the joint value of 1lim inf and 1lim sup. Furthermore
this proves that Ha(a) < o,

(ii) Take € > 0 small enough to make

1>1-r(t) > 2k[t]%, some K > 0,

for ([t| < ¢. Applying (12.15), we obtain for |h| < ¢,
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-
o

P{£(0) >u, £(jq) >ur

0<jqch
PR CURNS R J%{%%iﬂ%))
0<jqch 19
[h/ql+1
£ -e/k3%a%)).
3=1

P{ max £&(jg) >uj
0<jaszh
> [31 p{£(0) >u} - [B]
> [B1(1-0(u) - 208)
- 9
hy ¢ (u)
> [5] S—(1+o(l) - 2
Since [8] ~ 1 u2/a, part (ii) follows from
(h/ql+l
£ (1-0(/ki%%) < ¢
j=1 j=
as there is then certainly one a,

1/2.

The following three lemmas relate the continuous maximum

to the discrete one
0<jqgh

the probability that the discrete maximum is less than u - y/u

the continuous is greater than

LEMMA 12.5 Let u »+» =, g »~ 0, uz/aq ~a >0, and let vy

positive constant g8 < a/2. Then

(1 -9 (/ki%*)
1
o .o o
< 3 $LKIA) L4 a5 a - ®,
j=l ./Kjaaa
that makes the sum less than

sup £(t)
O<t<h
max £(jgq). We first prove that we can neglect
and
u, as y = as + 0.
= aB for some

v = lim sup —27a—-1—— P{ max £(jq) 5u—-\71-, sup £(t) >u}
use  u”’T¢lu)/u  0<¢igch 0<t<h
-0 as a -+ 0,

PROOF By Boole’s inequality and stationarity

P{ max

0<jqc<h
b3

and with gu(s) u(g(sq) ~u), we

£(i@ cu~-L, sup £(t) >u)
O0<t<h

hp

g Ple( cu-%, sup £(t) >ul,

O<tsq

can write
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PIE(0) su-T%, sup &(t) >ul
O<teg
u-y/u
= J ¢ (x)P{ sup &(t) >ul£(0) =x}dx
X==00 0<t<q

Y
1 ¥ !

S = ¢(u+<) P{ su £ (s) >0/ _(0) =yldy.

y==o u u 055?1 u l u

By Lemma 12.2 (i), the conditional distributions of Eu(s) given

£,(00 =y are normal with mean
u(s) =y - a*ls|*(1 +0(1)) as q » 0
with the of{(l) uniform in |s| < 1. Here u(s) <y for small q, and

P{ sup £ (s) >0}g (0) =y} 2 P{ sup (5 (s) ~u(s)) >-y[g,(0) =y},
i<s<l 0<s<l

where, conditional on Eu(O), Eu(s) - u(s) 1is a non-stationary normal

process with mean zero and, by Lemma 12.2 (ii), incremental variance
a a
var (£ (s) =€ (t)[£,(0) =y) ¢ Ka"[t-s]",

for some constant K which is independent of a and y. Fernique's

Lemma (Lemma 12.1) implies that, with ¢ = ca/K,

p{ sup (£ (s) —u(s)) >-y|€ (0) =y} < 4 exp(-ca %y?),
0<s<1 M u

and thus, using K and ¢ as generic constants,

1

—57g——— P{ max 5(jq)gu-—3;, sup £(t) >u}
u” Te{u)/u 0<jgch 0<t<h

h oY Y -a 2
< ——773—7—7 /¢ (u +u) s exp(-ca "y )dy
qu ¢ (u g

Y ypa=G,2
$ =7 LT Yy
qu e
-y ~-a 2
K -ca 'y
AR
~ K% 2L g (-cab0/2)

Clearly, this tends to zero as a » 0, since 8 < a/2, which proves the

lemma.
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LEMMA 12.6 If 4y -~ ©, q + 0, uZ/uq > a>0, and y = a6 for some con-

stant B8 > 0, then, with h as in Lemma 12.4,

1im ——7———-——— Plu~L< max £(jq) <u) = n(e¥ -1)cl/o 4 (a) .
u+® u (u) /u 0<jgz<h *

PROOF Since uz/aq +a >0 implies (u —%)2/aq > a, and since further-

more
-X
(u _1)2/a ¢ (u Ry ~ e u2/ag(u)
u u

-X
Ut g
as u + «, it follows from Lemma 12.4 (i) that

—-7—-——_p{u—l< max £ (jq) <u}
0<jqg<h -

¢(u)/u
= 2____/al. — (P{ max £ (jq) >u-%}—p{ max £(3jq) >u})
¢ (u) /u 0<jgzh 0<jq<h
» he'ct/%y_(a) - hCl/aHa(a). .

LEMMA 12.7 Under the conditions of Lemma 12.4,

1/a .
(1) h C H (a) < lim inf ——7——————— P{ sup &(t) >u)
o U+ ¢ (u) /u 0<t<h

(12.19)

A

lim sup P{ sup E(t) >u}
e 27% (W)/u  Os<ts

v, + h(e’ -1)cl/®

A

1/a -
Ha(a) + hC Ha(a) < ®,
fof Y = aB, where, by Lemma 12.5, va -0 as a + 0.

(ii) lim H (a) = Hy, say
a»0

exists finite, and

(12.20) —~7r—-————— Pl s £(t) >u} » he / .
¢ (u) /u 0<:§ *

(1ii) Ha is independent of (.
PROOF Since

P{ max £(jq) >u} < p{ sup £(t) »u)
0<jg<h O<t<h
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< P{ max £(jq) <u -{. sup £(t) >ul
0<3jg<h O<t<h

+Plu-L< max £(3q) <u)
0<jgc<h

+ P{ max £(3jg) >u},
0<iqsh

part (i) follows directly from Lemmas 12.4, 12.5 and 12.6.
Further, the middle limits in (12.19) are independent of a, and it

follows that 1lim sup Ha(a) < «, Therefore
a~0

h(e¥ -l)Cl/“Hu(a) -0
as a » 0, and since va 0 it follows as in the proof of Lemma 12.4
(i) that 1lim Hu(a) exists, finite and (12.20) holds.
a-»0

For part (iii), note that if ¢(t) satisfies (2.1) then the covari-

ance function T(1) of E(t) = g(t/Cl/a) satisfies

) =1 - [t/ +o(|1|* as 1 -+ 0.
Furthermore
1 1 ~
YLV P{ sup ¢£(t) >u} = —————— P{ sup E(t) >ul,
w?/% (u) /u 0<t<h u?/% (u) /u 0<t<hcl/®

which by (ii) shows that Hu does not depend on C.

One immediate consequence of (12.20) and Lemma 12.4 (i) is that

lim sup -zz;l———— P{ max ¢£(jq) <u, sup E£(t) >u}
u»e U ¢ (u)/u  0g<jqch 0<t<h

(12.21)

lim sup <—§7a—£———— P{ sup &(t) >u}

u+ » T (u)/u O0<t<h

1

- p{ max £(jq) >u}\
w2/ (u) /u 0<jqch J

l/(l > >
hC (H“ -Ha(a)) 0 as a 0.

Of course, (12.20) has its main interest if Hu > 0, but to prove

this requires some further work.
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LEMMA 12.8 H, > 0.
PROOF We have from Lemma 12.4 (i) and (ii) that there is an ag > 0
such that
H (n,a,)
H (ag) =1im°‘—a°—>o.
o n+ na,
Let the seguence Ya(j) be as in the proof of Lemma 12.3, i.e. normal

with mean -ca®|j|® and covariances ca®([i|®+[3|®-]3-1|%) . Then

we have from (12.7),

1/a 0 -X
C 1 (n,a) =1+ /e "P{ max Y_(3) >-x}dx,
a ] 0<j<n a

Cl/aﬁa(nk,a) 1+ f ¢ *p{ max Ya(j) > -x}dx,

-0 0<j<nk

0
1+ / e*{ max Y K (3) > -x}ax.

Cl/aH (n,ak)
o - 0<j<n

Here Ya(jk), j=1, ..., n have the same distributions as Yak(j).

y=1, ..., n, which implies
Hu(n,ak) < Hu(nk,a)

for k=1,2,..., the r.v.'s in Ha(n,ak) forming a subset of those

appearing in Ha(nk,a). Thus

Ha(n,ao) Ha(nk,ao/k)
0 < Hy(ag) = lim —" < Uim —poe—py— = H_(ay/k),
a0 N na0 o nk (a0 k a' 0
and since Ha(ao/k) - HOl as k + =, the lemma follows. o

By combining Lemmas 12.7 and 12.8 we obtain the tail of the distribu-

tion of the maximum M(h) = sup{£(t); 0 <t <hl} over a fixed interval.

THEOREM 12.9 If r(t) satisfies (12.1), then for each fixed h > 0

such that sup r(t) = 6 < 1 for all ¢ > 0,
e<t<h €

lim Ta_l'__ P{M(h) >u} = hCl/“Ha,

u+e u "¢ (u) /u

where Ha > 0 is a finite constant depending only on a. =}
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REMARK 12.10 In the proof of Theorem 12.9 we obtained the existence of
the constant Ha by rather tricky estimates, starting with
0

;e *p{ max Y, (3 >—x}dx>.

-l/a(l R
- 0<3i<n

Ha(n,a) =C

By pursuing these estimates further one can obtain a related expression

for Ha'
-1 0 -X
H, = 1lim T ~ / e "P{ sup Yo (t) > -x}dx,
T - 0<t<T
where {Yo(t)} is a non-stationary normal process with mean -|t|*

and covariances |s|%® + {t|® - |t -s|%. However, this does not seem to
be very instructive, nor of much help in computing Ha‘

It should be noted, though, that the proper time-normalization of
the maximum distribution only depends on the covariance function through

the time-scale Cl/“

and on the constant Ha' Therefore, if one can
find the limiting form of the tail of the distribution of M(h) (for
some h) for one single process satisfying (12.1) one also knows the
value of H for that particular a. For a = 2 this is easily done,
by considering the simple cosine-process (6.6). By comparing (6.12) and

Theorem 12.9, we find H, = 1/v7.

2
The only other value of a for which the tail of the distribution
of M(h) has been found is a = 1. In fact, explicit expressions for
the entire distribution of M(h) are known for the normal process with
triangular covariance function r(t) =1 - [t|, |t| < 1, see Slepian
(1961), and as a result one has Hl = 1. In particular, this shows that
for the Ornstein-Uhlenbeck process, with r(t) = exp(-]t|), P{M(h) >u}

~ hu¢ (u). o

Before proceeding to the maxima over increasing intervals we formu-

late the following lemma for later reference.

LEMMA 12.11 Suppose {£(t)} satisfies (12.1), let h > 0 be fixed

such that sup r{t) <1 for all ¢ > 0, and let u -+ =, q -+ 0,
£<t<h
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uz/aq - a - 0. Then for every interval I of length h,

0 < PEL(3qQ) <y, 39 €Iy - PIM(I) cu) < who, + olu),

1/ 2/

where L = C aﬂuu G‘z(u)/u, Vs = l - Hu(a)/Hu -+ 0 as a - 0, and the

o(u)-term is the same for all intervals of length h,

PROOF By stationarity

0

1A

P{£(jq) <u, jq €I} - PIM(I) <u}

A

P{£(0) >u} + P{£(jg) <u, Jq €10,h])} - P{M(h) <ul,

where P{£(0) >u} < ¢(u)/u = o(p). Therefore the result is immediate
from Lemma 12.4 (i),

WL P max  £(jq) >ul = hH_(a)/H_ + o(l),
. a
0<iqch

and (12.290),

vl piM(h) >ul = h + o().

Maxima over increasing intervals

The covariance condition (7.2), i.e. r(t) logt - 0 as t + =, is also
sufficient to establish the double expounential limit for the maximum
M(T) = sup{g(t); 0 <t <T} in this general case. We then let T -+ =,

u + » so that

Ty = TCl/aHauz/a¢(u)/u s+ 1 >0,

i.e. TP{M(h) >u} +» th, Taking logarithms we get

2
log T + loq(cl/aﬂa(Zn)-l/z) + 27}2 logu - & + log 1,

2
implying
u? ~ 21097,

or log u = % log2 + % loglog T + o{l), which gives
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2

(12.22) u® = 21logT + 2-a log logT -~ 2 logT

‘1/22(2—’1)/20!) + ol(l).

+ 2 10g (cM/%H_ (2n)
LEMMA 12.12 Let ¢ > 0 be given, and suppose (12.1) and 7.2) both

hold. Let T~ 1/u for 1 > 0 fixed and with 1 = Cl/u

so that u ~ (2109T)l/2 as T+ », and let g+ 0 as u ~ ® in such

Hauz/% (u) /v,

a way that uz/“q = a >» 0. Then

2 |
(12.2) T ¢ rkg e /AT kal) Ly a5 1 s s,
e<kgeT
PROOF This lemma corresponds to Lemma 7.1. First, we split the sum in
(12.23) at TB. where £ is a constant such that 0 < 8 < i—::—,

3 = supi|r(t)j; |t! > €1 <1, Then, with the constant K changing from

line to line,

-u? | 3+1  _ 2
I g Ir(kq) e 8 7 (*irtka) D) < 3_7_ o U/ (146)
e:kqf_TB q
g B+l 'I%X « 20841 'I%K
- T R V] (log T) T
q2 (v aq)

since exp(-u2/2) < K/T, u2 ~ 2 1logT, and u2/aq + a > 0.

§(t)
log t

With 6(t) = sup{|r(s) logs|; s>t}, we have |r(t)| < as

t » =, and hence for kq 2 TB,

uZ/aeirkar ) ~ufa-6(1%) /109 %)

8o that the remaining sum is bounded by

(1o 8 B
(12.24) % I |r(kq) [e”¥ (1=8(T")/log T7)
8ckqeT
2. B 8
log T” - "‘Bjkqfl‘

Since r(t)log t » 0, we also have
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% z |r(kq) [log kq + ©
8 ckqet
as T *+ =, while for the remaining factor in (12.24) we have to use the
more precise estimate from (12.22),

2 -
u® = 2 logT + -2-a—°‘ log log T + O(1).

Since 6(t) - 0 as t + », we see that for some constant K > 0,

2-Q

—u2 o 8 8 _
ey (1-3(T7)/log T") < KT 2(loq T a

Thus, since u2 ~ 21logT and uz/aq + a,

2, B 8
g : ir(kq) |e u“(1-8(T ) /log T")
Tefkqu
< (52 172109 m~FRN /e 1 7 o)
q log T
= — 57— (log 11%/%(log 1) (270} /2 —— o = o),
(u q) log T

. and this concludes the proof of the lemma.

We can now proceed along similar lines as the nroof of Theorem
7.6. First, take a fixed h > 0, write n = [(T/h], and divide [0,nh}
into h intervals of length h, and then split each interval into
subintervals Ik' I; of length h-¢ and e, respectively. We then
show asymptotic independence of maxima, first giving the following

lemmas, corresponding to Lemmas 7.4, 7.5, respectively.

LEMMA 12.13 Suppose u + =, q +- 0, uz/aq +a >0, (12.1) hclds, and

Tu » 1 > 9. Then

n
(1) lim sup [P{M(U I, ) <u} - P{M(nh) <u}| < t-&,
u-+re 1 - - - h
n n
(11) lim sup |P{£(3q) <u, jg€U I,} - P{M(UT ) <u}l| < w_,
y-+om 1 k 1 k® = - a

where Pa ™ 0 as a -+ 0,
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PROOF Part (i) follows at once from Boole’s inequality and Theorem 12.9,
since

n -
0 < p{M(uI,) 2u; = P{M(nh) Su} < nPiM(I}) >ul ~ nue - 1%,

since nu ~ Tu/h = 1/h.

Part (ii) follows similarly from Lemma 12.11, which implies

o
A

n n
< P{£(jq) <u, jgeuU I b = P{M( uI) <u}b ¢
1 1

1A

n max(?(é(jq) <u, jq€Ik} - P{M(Ik) 5u}>
k

A

nb(h=-e)z  + no(u) =~ 1(1 -%)oa I TPy

where O 1 - Ha(a)/Ha -+ 0 as a =+ 0. o

LOMMA 12.14 Let r(t) 0 as t -+»=, and suppose that, as uz/lq-»a >0,

(12.23) holds for each ¢ >0. Then, as T +=, uz/“q ~a,

n n
(i) P{g£(jq) <u, jgeEu Ik} - 1 p{&(iq) <u, jq EIk} -0,
1 k=1
n €
(ii) lim sup | 1 P{£(jq) cu, JQE€I )} = PP {M(h) <ul| < t(p +5)
k=1 a

where Da + 0 as a + 0.

PROOF The proof of part (i) is identical to that of Lemma 7.5 (i). As

for part (ii), we have, by Lemma 12.11,

o
[N
w
W= s
—

n
P{£(jg) <u, jqerk} - I P(M(Ik) <u}l
k=1

A

. . \
P . €I} - P{M(I
n mix( {e(iq) cu, Jq€I) {M(1)) gu}/

A

nu(h -c)oa + no (y)

+

Tl=flo, < 1o,

since nu ~ Tu/h~+1/h. Furthermore, by stationarity
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o
A
s

PUM(I) cup = PP{M(h) <u} =

k=1

#

PPM(I}) cub - PT{M(h) cui ¢

A

n(P(M(Il) <ul = P{M(h) §u}> <

t~

{ * ~ + TeE
nP{M(I]) >ul nue N~ o

THEOREM 12.15 Let {f(t)} be a stationary normal process with zero

mean and suppose r(t) satisfies (12.1) and (7.2), i.e.
r(t) = 1-cle|®+o(|t|®) as t =0

and
rit)log t ~ 0 as t » =,

If u=u;+ = so that Tu = Tcl/aﬂauz/a¢(u)/u + 1 > 0, then

P{M(T) < u} ~+ e’ as T » =,

PROQF By Lemma 12.12 condition (12.23) of Lemma 12.14 is satisfied,

and ty Lemmas 12.13 and 12.14 we then have

lim sup [P1M(nh) <u} - PTiM(h) <u}. < 2t(p_+5),
usrm - = - a h

where “a * 0 as a + 0. Letting € - 0 and a + 0 this shows that

1im P{M(nh) < u} -P"{M(h) < u} = 0.

n-+w
By Theorem 12.9, P{M(h) < u} = 1 -yh+0o(u) and hence, as u ~ 1/T,
n ~ T/h,

P {M(h) < u}l = (l=uh +o(u))n + e T,

Since furthermore
M(nh) ¢ M(T) < M{{(n+1)h),

this proves the theorem. o

As is easily checked, the choice u, = ﬁi-th, with a and bT

T T
given by (12.2), satisfies Ty » 1t = e-x, ef. (12.22), and we immediate-

ly have the following theorem,
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THEOREM 12.16 Suppose {£(t)} satisfies the conditions of Theorem

12.15, and that

(2 log '1‘)]'/2

[+
[}

T
172 1 2 -«
b, = (2 log T) + { log 1lcg T +
T (2 10g /2 @
. log(Cl/uHa(Zﬂ)-l/z 2(2—&)/2a)}'
Then P{ay(M(T) -bg) <x} ~ e as T » o, o

Asymptotic properties of e-upcrossings

As mentioned on p. 88, the asymptotic Poisson character of upcrossings
applies also to non-differentiable normal processes, if one considers
e-upcrossings instead of ordinary upcrossings. To prove this, we need
to evaluate the expectation of Ns,u(T)' the number of e-upcrossings of

u by £{(), 0 <t <T.

LEMMA 12.17 Suppose r(t) satisfies (12.1). Then, with h as in Theo-

rem 12.9,
E(N (h)) E(N (1))
1/a
11m——7€-“;——(=11m——7—1——5u ) = ¢c/% .
u+e hu“’%g(u) /u use ul %6 (u) /v @

PROOF Write

A = {¢(t) >u for some tE€ (-¢,0]},

B

{g(t) >u for some t€ (0,e)l.
From Theorem 12.9 we have, for 2¢ < h,

2/a-1

P(A UB) ~ 2¢ Cl/aﬂau ${u) as u » o,

P(A) ~ € Cl/aﬂau2/°-1¢(u) as u -+ =,
P(B) ~ ¢ Cl/aHauz/a-l¢(u) as u + o,

Hence
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P(BAS) = (AUB) - (&) ~ ¢ ¢ u¥/ T (),

and
c _ - .
P(BA") < P{Ng'u(e) =1} E(NC'U(E)) < P(B),
since there is at most one e-upcrossing in [0,¢]. Hence
- 1/ 2/u=1
b(Nelu(E)) e C7"7H u ¢ (u)
and thus

E(N ,u(l)) =

1
€ €

E(N_  (e)) ~ cl/"uauz/“'lq) (u)

as required. o

In particular the lemma implies that asymptotically the mean number
of e-upcrossings of a suitably increasing level is independent of the
choice of € > 0, and this leads us directly to the Poisson result for

the time-normalized number of e-upcrossings. Let N be the point

T
process on (0,«) defined by

NT(B) = Ne,u(T'B)’

where the level u is chosen so that Ty = TCl/aHauz/a®(u)/u ~ 1 >0,

and let W be a Poisson process with intensity T.

THEOREM 12.18 Suppose that the assumptions of Theorem 12.15 are satis-

fied. Then the time-normalized point process N, of e-upcrossings of

the level u converges in distribution to N as u + », where N is a

Poisson process with intensity 1.

PROOF As in the proof of Theorem 8.2 we only have to check that for

c < d

(a) limE (dy(c,ul) = E(N(c,d]) = 1(d~c),
T+

m
and if R, = (ci’di] (disjoint), U = igl Ry then
'TIRiI

(b) P(NT(U) =0} + P{N(U) =0} = e .

n=g

i=1
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By Lemma 12.17, E(NT(c,d]) = E(N_ u(Tc,le) = TE(N_ u(c,d]) ~ T(d-c)u
~ 1{d -c), which proves {a). For part (b) go through the same steps as

in the proof of Theorem 8.2, with only obvious changes. o

In previous chapters we have encountered a variety of results, re-
lated to the Poisson convergence of upcrossings of an increasing level.
There are no further difficulties in extending these results to cover
g-upcrossings. However, we do not want to lengthen an already long jour-
ney over an ocean of lemmas. We just finish by mentioning that a little
further generality may be obtained throughout by including a function
of slow growth (or perhaps slow decrease) instead of C in (12.1).

This has been considered by Qualls and Watanabe (1972), and also by
Berman (1971 b).
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CHAPTER 12

EXTREMES OF CONTINUOUS PARAMETER STATIONARY PROCESSES

Our primary task in this chapter will be to discuss continuous gara-
meter analogues of the seguence results of Chapter 2, and in narticular
to obtain a corresponding version of Gnedenkc’s Theorem which applies
in the continuous parameter case.

Specifically throughout this chapter we consider a (strictly) sta-
tionary process (4(t); t -0: satisfying the general assumption stated
at the start of Chapter 6. In particular it will be assumed that £(t)
has a.s. continuous sample functions, continuous one~dimensional dis-
tributions, and that the underlying probability space is complete. As
shown in Lemma 6.1, it then follows that M(I) = sup{i(t); t€I. is a
r.v. for any interval I and, in particular, so is M(T) = M([0,T]).

Our main interest here concerns distributional properties of M(T)
as T - =, a sub)ect considered for the special (important) case of
normal processes in Chapters 7 and 12. We shall obtain asymptotic re-
sults for the general stationary processes considered here, along the
same lines as those for stationary sequences, obtained in Chapter 2.

In particular continuous parameter versions of Gnedenko’s Theorem will
be proved under appropriate dependence restrictions on %(t), analo-
gous to the Condition D(un). We shall also obtain results of the type
PiM(T) Sugph = e " (cf. Theorem 2.6) where Up > @ in an appropriate
manner as T - =, using a continuous parameter analogue of the Condi-
tion D'(un).

The general theory will not require that the mean number of upcross-
ings of a level u be finite, and therefore will include normal pro-
cesses of the type considered in Chapter 12. As we shall indicate, the
Chapter 12 results can be obtained from the general theory of this chapter,
though of course the same ultimate amount of work is involved. We shall

also consider the special case in which the mean number of upcrossings of




any level u per unit time 7. finite and cttair POISSOnN iimit thedrems
generaiizing thcsg of Chapter 8 to include non-normal processes.

As indicated in Chapter 7, it is convenient to relate the maximum
M(T) of the continuous process to the maximum of n terms of « se-
quence of "submaxima". Specifically if for some conveniently chosen

h > 0 we write
(13.1) 1z, = sup{i(t); (i-1)h <t <in;
then for any n =1, 2, ... we have

(13.2) M(nh) = max( ).

Ty pr et Sy
It is apparent that the properties of M(T) as T - = may be obtained
from those of Mi{nh) by writing n = [T/h] and thus approximating T

by nh.

As noted above, we shall consider continuous parameter analogues (to
be called C(uT), C'(uT)) of the Conditions D(un), D‘(un) used for se-
qguences. The Condition C(uT) will be used in ensuring that the sta-
tionary sequence (;n} defined by (13.1) satisfies D(un). However be-
fore introducing this condition we note a preliminary form of Gnedenko's
Theorem which simply assumes that the sequence {cn} satisfies D(un).
This result follows immediately from the seguence case and clearly i1llu-
strates the central ideas required in the continuous parameter context.
The more complete version (Theorem 13.5) to be given later, of course
simply requires finding appropriate conditions, of which the rain one

will be C(uT), on £(t), to guarantee that (cn} will satisfy D(un).

THEOREM 13.1 Suppose that for some families of constants iaT S0, T}

we have
(13.3) Pia (M(T) =b) <x} ¥ G(x) as T » =

for some non-degenerate G, and that the {ci} sequence defined by

(13.1) satisfies D(un) whenever u, = x/anh + bnh for some fixed

h > 0 and all real x. Then G 1is one of the three extreme value types,




-11°-

PROOF Since (13.3) holds in particular as T » = through values nh
and the &n-sequence is clearly stationary, the result follows by re-

placing En by Ln in Theorem 2.4 and using (13.2). =]

Although we shall not make further use of the fact, it is interest-

ing to note that this at once implies that Gnedenko’'s Theorem holds

under "strong mixing" assumptions as the following corollary shows.

COROLLARY 13.2 Theorem 13.1 holds in particular if the D(un) condi-
tions are replaced by the assumptions that {£(t)} is strongly mixing.
For then the seguence {;n} is stronagly mixing and hence satisfies

D(un). o

We now introduce the continuous analog of the Condition D(un), sta-

ted in terms of the finite~dimensional distribution functions Ft t
1+t

of £(t), again writing F {uy for F {u,...,u).

tl"'tn ty--- n

The points ti #ill be members of a discrete set {qu; j=1, 2,3,
where {qT} is a family of constants tending to zero as T » = at a

rate to be specified later.

Clun): The Conditicn Cluy) will be said to hold for the procecs

£(t) and the family of conatants {uT; T >0}, with respect to tre 2on-

1S 8y € ees sy Ep <<ty

belonging to {qu; 0 :qu <T} and satisfying t, -~ s_ 2 Yy, we have

stants dp > 0, ©f for any roints s

(13.4) (Fs s (uT) Fo

1°° % 1" %p 1%

where a + 0 for gome family

T, Yy Yp = o(T).

As in the discrete case we may (and do) take & y to be non-in-
’

creasing as Yy increases and also note that the condition A Y - 0
1
T
for some Yp = o(T) may be replaced by

(13.5) Gp A 0 as T +» o
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for each fixed i » 0,

The D(u,) condition for {;n} required in Theorem 13.1 will now
be related to C(uT) by approximating crossings and extremes of the
continuous parameter process, by corresponding quantities for a "sampled
version", To achieve the approximation we require two conditions in-
volving the maximum of £(t)} in fixed and in very small time intervals.
These conditions are given here in a form which applies very generally
— readily verifiable sufficient conditions for important cases are
given later in this chapter.

It will be convenient to introduce a function ¢ (u) which will gen-
erally describe the form of the tail of the distribution of the maximum
M(h) in a fixed interval (0,h) as u becomes large. Specifically we

shall as needed make one or more of the following successively stronger

assumptions:
(13.6) P{g(0) >u} = ofylu)),
(13.7) P{M(qg) >u} = o(y(u)) for any g = g{u) - 0 as u -+ =,

(13.8) there exists h 0 such that

0 >

lim sup P{M(h) >u}/(hy(u)) < 1, for 0 < h < h

U-+oo

(13.9) P{M(h) >u} ~ hy(u) as u -+ =, for 0 < h < h

Note that Equation (13.9) commonly holds and specifies that the tail
of the distribution of M(h) is asymptotically proportional to ,{(u),
whereas (13.8) is a weaker assumption which is sometimes convenient as
a sufficient condition for the yet weaker (13.7) and (13.6). As we
shall see later y(u) can also be identified with the mean number of
upcrossings of the level u per unit time, yu(u), in important cases
when this is finite. In any case it is of course possible to define
y{u) to be P{M(ho) >u}/h0 for some fixed h0 > 0, or some asymptoti-~
cally equivalent function and then attempt to verify any of the above

conditions which may be needed.
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We shal! also reguire an assumption relating "continuous and dis-
crete" maxima in fixed intervals. Specifically we assume, as required,
that for each a » 0 there is a family of constants {g; = (qa(U)}
tending to zero as u » «» for each a > 0, such that for any fixed

h > 0,

{13.10) lim sup P{M(h) >u, £(jq) <u, 0 <ig<h:/y(u) - 0 as a ~» 0.

u-r®

Finally a condition which is sometimes helpful in verifying (13.10) is

(13.11) lim sup 2L&6(0) su, £(q) LU M(g) >ul | 5 a5 a - 0.

U g‘u(u
dere the constant a specifies the rate of convergence to zero of
qa(u) - as a decreases, the grid of points {qa(u)} tends to become
{asymptotically) finer, and for small a the maximum of £({t) on the dis-
crete grid approximates the continuous maximum well, as will be seen
below. (Simpler versions of (13.10) and (13.11) would be to assume the
existence of one family g = q(u) of constants such that the upper
limits in (13.10) and (13.11) are zero for this family. It can be seen
that one can do this without loss of generality in the theorems below,
but it seems that, as was the case in Chapter 12, the conditions in-
volving the parameter a often may be easier to check.)

The following lemma contains some simple but useful relationships.

LEMMA 13.3 (i) If (13.8) holds so does (13.7) which in turn implies

(13.6) . Hence (13.9) clearly implies (13.8), (13.7), and (13.6).

(ii) If I 1is any interval of length h and (13.6), (13.10) both

hold, then there are constants Aa such that

(13.12) 0 ¢ lim sup(P{7(jg) su, jq€I} - P{M(I) cu}l/w(a) ¢ 2 ~+ 0
Q-0

as a -+ 0, where g = qa(u) is as in (13.10), the convergence being

uniform in all intervals of this fixed length h.

(iii) 1If (13.7) and (13.11) hold so does (13.10) and hence, by (ii)
so does (13.12).
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(iv) If (13.9) holds and Il = (0,h), I2 = (h,2h) with J < h - h0/2,

then P{M(Il) >u, M(I,) >u; = o(y(u)) as u » =,
PROOF (i) If (13.8) holds and g+0 as u=+=, then for any fixed h> 0,

g is eventually smaller than h and P{M(g) >u} < P{M(h) >ul}l, so that

lim sup P{M(q) >u:r/v(u) < lim sup P{M(h) >u;s/v(u) < h

yrw u-»o
by (13.8). Since h is arbitrary it follows that P{M(q) >u}l/y(u) -~ 0,
giving (13.7). It is clear that (13.7) implies (13.6) since P{f(0) »u;

< P{M(g) -uji, which proves {i).

To prove (ii) we assume that (13.6) and (13.10) hold and let I be an
interval of fixed length h. Since the numbers of points 3g in I and in

(0,h] differ by at most 2, it is readily seen from stationarity that
P{£(jq) <u, jg €I} < P{E(jq) <u, 0 <jg<h} + P{£(0) >u} +P{£(h) >ul

so that

o
A

< P{£(iq) <u, jg€I} - P{M(I) <u}

tA

P{£(3q) <u, 0 <3jg<h} - P{M(h) <u} +2P{£(0) >u}

0

PiM(h) >u, El3q) <u, 0 <Jjg<h} +2P(£(0) >u}

from which (13.12) follows at once by (13.6) and (13.10), so that (ii)

follows.

To prove (iii) we note that there are at most [h/g] complete inter-
vals [(j-1)g,Jjq) in [0,h] with perhaps a smaller interval remaining

so that

P{u(h) >u, £(iq) <u, 0 <igch} < 2 P{£(0) <u, £(q) <u, M{g) >u)

+ P{M(q) >u}
80 that (13.10) easily follows from (13.11) and (13.7).

Finally if (13.9) holds and I, = (0,h), I, = (h,2h} with

0 < h ¢ h0/2, then
PHHI? >u} =P{Mu1)>u}= h y(u) (1 +o0(l))

and
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P({M(Il) >ut U{M(Iz) ~uj) = P{M(Il UIZ) >u} = 2hy(u) (1 +0(l))

so that

P{M(Il) >u, M(I,) >u; P(M(Il) >u} o+ P{M(Iz) >u}

- P((M(Il) >u} U{M(IZ) >ut)

o(y(u))

as reguired. a

For h > 0, let {Tn} be a sequence of time points such T € [nh,

(n+l)h) and write v, = up . It is then relatively easy to relate
n

D(v ) for the sequence {cn) to the condition C(uy) for the process

£(t), as the following lemma shows.

LEMMA 13.4 Suppose that (13.6) holds for some function y(u) and let
(qa(u)} be a family of constants for each a > 0 with q,(u >0,
qa(u) - 0 as u » =, and such that (13.10) holds. If C(uT) is satis-

fied with respect to the family Qp = qa(uT) for each a > 0, and

TW(uT) is bounded, then the sequence {cn} defined by (13.1) satis-

fies D(vn), where vy = uTn is as above.

PROOF For a given n, let il < i2 < 4.l < i < jl < el < jp. < n,

iy - ip > L. Write 1, = [(ir -1)h, irh], Jg = [(js ~1)h, jsh]. For

brevity write g for the elements in one of the families {q (+)} and
P ' . P
Aq = rQl{g(Jq) SVyr JOEID, A= rgl{;ir <v_}
B = n'{z(jq)<v, jg€J_}, B = Er>1'{c. <v_}.
9  g=1 - n s s=1 g~ M

It follows in an obvious way from Lemma 13.3 (ii) that

0 < lim sup{P(Aqu) - P(AB)} < 1lim sup(p~vp')W(vn)xa

n+o n+w

A

lim sup nw(vn)xa < Kx

n*+©

a

let

for some constant K (since nha«Tn and TnW(vn) is bounded) and where

A+ 0
a




as a -+ 0. Similarly

11r:+°soup[p(Aq) ~P(A)| < KA, lixg*:up[P(Bq) -P(B)| < Kr,
Now
{P(ANB) -P(A)P(B)] < |P(ANB) -P(Aanq)]
P NB ) -P(A )P(B )! + P(A P(B_ ) -P(B
+y(Aq g p(q)(q) (q)l(q) (B) |
(13.13)

+ P(B) lP(Aq) -P(A)}

= B ) - B
R4+ IP(Aqﬂ q) P(Aq)P( q)l

’

where 1lim sup Rn a

n-+o ’

Since the largest Jjg in any Ir is at most iph, and the smallest

< 3KXM_.
- a

in any JS is at least (jl -1)h, their difference is at least
{2 -1)h. Also the largest 3jg 1in Jp, does not exceed jp,h < nh g Tn

so that from (13.4) and (13.13),

(a)
(13.14) [P(ANB) -P(A)P(B)| < R . + aTn,(g_l)h ’

in which the dependence of Ap , On & is explicitly indicated.
’

. . (a) . :
‘ = -
Write now a N ;SS{R ,a tagn '(2_1)]}. Since the left-hand side of
(13.14) does not depend on a we have

|P(anB) -P@A)PB)] < af ,

which is precisely the desired conclusion of the lemma, provided we

can show that lim ap N 0 for any x > 0 (cf. (2.3)). But, for any
N+ ’

a> o0,

R + g lal (a)

*
®n,an < Tp,a O‘Tn.()‘n-l)h $Riat aTn,x’rn/z

when n 1is sufficiently large (since aéaz decreases in 1), and
’

hence by (13.5)

lim sup a*
’

< 3K\
fow n,An - a’

and since a is arbitrary and Ay 0 as a » 0, it follows that

o + 0 as desired.

n,iAn
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The general continuous version of Gnedenko's Theorem is now readily

restated in terms of conditions on £ {(t) itself.

THEOREM 13.5 With the above notation for the stationary process {£(t)!}

satisfying (13.6) for some function 1 suppose that there are constants

aq > 0, bT such that

P{ag(M(T) -bs) X} » G(x)

for a non-degenerate G. Suppose that Tw(uT) is bounded and C(uT)

holds for Up

of constants {qa(u)} satisfying (13.10). Then G is one of the three

= x/aT + bT for each real x, with respect to families

extreme value distributional types.
PROOF This follows at once from Theorem 13.1 and Lemma 13.4, by choos-

ing Tn = nh. o

As noted the conditions of this theorem are of a general kind, and
more specific sufficient conditions will be given in the applications

later in this chapter.

Convergence of P{M(T) £ug}

Gnedenko's Theorem involved consideration of P{a,{M(T) -bT} <x}, which
may be rewritten as P{M(T) Suqpl with u; = x/a; + bgy. We turn now to
the question of convergence of P{M(T) <u,} as T > » for families

Up which are not necessarily linear functions of a parameter x.

(This is analogous to the convergence of P(Mn Sun) for sequences, of
course.) These results are of interest in their own right, but also
since they make it possible to simply modify the classical criteria for
domains of attraction to the three limiting distributions, to apply in

this continuous parameter context.

Our main purpose is to demonstrate the equivalence of the relations




p{M(h) >uT} ~ /T and P{M(T) <u,} ~ e ' under appropriate conditicns.

!
The following condition will be referred to as C'(uT) and is analogous

to D'(un) defined in Chapter 2, for segquences.

Cllun): The Tondition C'(uy) will te 3atd to nold for the ;r.cesc

{(t)} and the family of constants | T -0}, with reayect 2o tae

UT:

congtants qp ~ 0 7f lim sup T z P{£ (0} > U £(3iq) >Upco 0 as
T+ h<jg<eT

e » 0, for some h > 0.

The following lemma will be useful in obtaining the desired equiva-

lence.

LEMMA 13.6 Suppose that (13.9) holds for some function o, and let
{uT} be a family of levels such that C'(uT) holds with respect to
families {qa(u)} satisfying (13.10), for each a > 0, with h in
C'(uT) not exceeding h0/2 in (13.9). Then Tw(uT) is bounded, and

writing n' = [n/k], for n and k integers,

(13.15) 0 < lim sup(n'P{M(h) >vn} -P{M(n'h) >vn}] = o(k-l), as k » =,

n—+cw

with v_ =

n uTn, for any sequence {Tn} with T € [nh, (n+l)h).

PROOF We shall use the extra assumption

(13.16) lim inf Tw(uT) >0,
T+co

in proving Tw(uT) bounded and (13.15). It is then easily checked
(e.g. by replacing Tw(uT) be max(1, Tw(uT)) in the proof) that the
result holds also without the extra assumption.

J
jg €I}, for any interval 1. We shall first show that (assuming (13.16)

Now, write I. = [(j-1)h,jh], j=1,2,... and Mq(I) = max{f (iqg;

holds)

1 . _ . _ -1
(13.17) 0 < lirrt:*:up TIT [n'p{M(h) >v } - PM(n'h) >v } = o(k ")

as k + ». The expression in (13.17) is clearly non-negative, and by

stationarity and the fact that M > Mq, does not exceed




nl
‘ 1 . .
lim sup m/—F—— . [PIM(I,) »v_: = P'M (I.) »v_:]
nom Tnv(vn) j=1 3 n q 7j n
n'
+ lim sup /=——— [ I P'M (I.)] -v_: = P‘M (n'h} ~v_:].
new - Tpt (V) j=1 q ) n q n

By Lemma 13.3 (ii), the first of the upper limits does not exceed

xa lim sup n'/Tn = fa/(hk), where }a - 0 as a +» 0. The expression
n-»w

in the second upper limit may be written as

1 1 )
T;E%V;T [jzl P{Mq(Ij) N jzl P{Mq(Ij) SV M (i:§+1 I,) :vn;]
1 nt o
< an Vn) jil P%Mq(Ij) >V Mq(IJ+l) SV
n' n'
MEIRTICR) jil Pft4q<1j) a Mq(ﬂ;Lj:+2 1) »vn}
<R o)« =2 1 i) >y, £ > v,
2 Tn anw(vn) h<jqén'h n n

by Lemma 13.3 (i) and some obvious estimation using stationarity. By
C'(uT), using (13.16), the upper limit (over n) of the last term is
readily seen to be o(k_lb for each a > 0, and (13.17) now follows by

gathering these facts.

Further, by (13.17) and (13.9)

. 1 S 1
lim inf =—5—— > lim inf — P{M(n'h) >v_}
new  Tpv(vy) new | Tovlvy) n

v

. . 1 .
lim inf TV n'P{M(h) >v_}
n+® Tnb Vn) n

- lim sup lev—) (n'PiM(h) >v_ } ~P{M(n'h) >v_!]
n-+v n n

1 1
'l; - o(i’)r

and hence lim :I.nf(an!vn))-1 > 0. Thus an(u ) is bounded for any

T
nee n
sequence {Tn} satisfying nh ¢ Tn < (n+1)h, which readily implies that
Tw(uT) is bounded. Finally, (13.15) then follows at once from (13.17).

=]
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COROLLARY 13.7 Under the conditions of the lemma, if )n x =
. 1

= ‘n'hu(vn) -PM(n'h) A then 1lim sup kn,k = ok ") as k - =,

n+»«

PROOF Noting that n'w(vn) is bounded, this follows at once from the

lemma, by (13.9). o
Our main result now follows readily.

THEOREM 13.8 Suppose that (13.9) holds for some function vy, and let
{uT} be a family of constants such that for each a > 0, Cluy) and
C'(uT) hold with respect to the family (qa(u)} of constants satisfying

(13.10), with h in C'(uT) not exceeding h0/2 in (13.9). Then
(13.18) Tw(uT) > 71 >0

if and only if

(13.19) P{MIT) Zuys » e .

PROCF If (13.9), (13.10), and C'(uT) hold as stated, then Tw(uT)

is bounded according to Lemma 13.6 and by Lemma 13.4 the sequence of

"submaxima" {;n} defined by (13.1) satisfies D(vn), with Vp = Up oo
n

for any sequence (Tn} with Tn € [nh, (n+l)h). Hence from Lemma 2.3,

writing n' = [n/k],

(13.20) PiM(nh) cv_j - P

{M(n'h) v } + 0 as n » =,
Clearly it is enough to prove that
(13.21) Tny(vn) + 1 >0
if and only if
< -> =T
(13.22) P{M(Tn) vyt e ,
for any sequence (Tn} with T, € [nh, (n+l)h). Further, Tw(uT)

bounded implies that w(uT) + 0 as T » = go that

0

A

P{M(nh) <v } - PIM(T ) 2v }

[y

P (M(h) v b~ hy(v) -0,




Hence it is sufficient to prove that (13.21) and (13.23) are equivalent
under the hypothesis of the theorem,

Suppose now that (13.21) holds so that in particular

(13.24) n'hw(vn) ~1/k as n » =,
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and thus (13.22) holds if and only if ‘
(13.23) P{M(nh) cv } - e ",

With the notation of Corollary 13.7 we have

- ! - : ’ - LAY
(13.25) 1 = n'hylv) = A < PiM(n'h) v} < 1 - n'holv ) + A

k
so that, letting n - =,

1 - t/k = ofk™) < lim inf P(M(n'h) v }

n+w

A

lim sup P{M(n'h) 5vn}

n-+®

1-1/k +# ok’ Yy,

1A

By taking k-th powers throughout and using (13.20) we obtain

(1-1/k=o(k™))* < Lim inf P{M(nn) <v_}

n—+o

A

lim sup P{M(nh) <v 1}

n+*r>

(1-1/k +o (k"I k,

tA

and letting k tend to infinity proves (13.23).

Hence (13.21) implies (13.23) under the stated conditions. We shall
now show that conversely (13.23) implies (13.21). The first part of the
above proof still applies so that (13.20) and the conclusion of Corol-
lary 13.7, and hence (13.25), hold. A rearrangement of (13.25) gives

- 1 - [
1 - P{M{n'h) <v } Aok < R'hulv)
<1 - PM(n'h) cv b+,
But it follows from (13.20) and (13.23) that P(M(n'h) <v ) » e /¥

and hence, using Corollary 13.7, that
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-eTF - ok < lim inf n'ho(v )

n-+x

A

lim sup n'hw(vn)

n—-«

1 - ek 4 oih.

Multiplying through by k and letting k - = shows that Tn;(vn) ~

~ nh@(vn) + 7, and concludes the proof that (13.23) implies (13.21). @

Associated sequence of independent variables

With a slight change of emphasis from Chapter 2 we say that any i.i.d.

sequence L, Lo, ... whose marginal d.f. F satisfies

1 - F(u) ~ P{M(h) > u}
for some h > 0, is an independent gequence assoctated with {E£(t)}.
If (13.9) holds this is clearly equivalent to the requirement

(13.26) 1 - F(u) ~ hy(u) as u +» =,

Theorem 13.8 may then be related to the corresponding result for i.i.d.

sequences in the following way.

THEOREM 13.9 Let {u;} be a family of constants such that the

conditions of Theorem 13.8 hold, and let Cl' c2, ... be an associated

independent sequence. Let 0 < p < 1. 1f
{13.27) PM(T) ¢ul » o as T » =

then

(13.28) p{M_<v } » ¢ as n =+~

with Va T Ynpe Conversely, if (13.28) holds for some sequence {vn}

then (13.27) holds for any (uT} such that w(uTl ~ W(V[T/h])'

provided the conditions of Theorem 13.8 hold.

PROOF If (13.27) helds, and o = e-T, Theorem 13.8 and (13.26) aive
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1 - F(unh) ~ hylu )~ 1/n,

-

so that P(Mng unh} + e °, giving (13.28). Conversely, {13.28) and

(13.26) imply that hw(vn) ~ 1 - F(vn) ~ 7/n and hence

Ty (up) ~ To(v ) ~ Tt/ (h[T/h]) » <

{T/h]

so that (13.27) holds by Theorem 13.8. o

These results show how the function % may be used in the classical
criteria for domains of attraction to determine the asymptotic distri-
bution of MI(T). We write U(G) for the domain of attraction tc the
(extreme value) d.f. G, i.e. the set of all d.f.'s F such that

n N 3 }
F (x/an +b) G{x) for some sequences {a_ >0}, {bn,.

THEOREM 13.10 Suppose that the conditions of Theorem 13.8 hold for
all families {uT} of the form ug = x/aj + by, where a; > 0, b
are given constants, and that

(13.29) Pfap(M(T) = bg) < x} > G(x).

Then (13.26) holds for some FE€ D(G). Conversely, suppose {13.9) holds
and that (13.26) is satisfied for some FE€D(G), let aé > 0, bé be

n ¢ t > : = ]
constants such that F (x/an +bn) Gi(x), and define an alr/n]’
bT = bET/h]' Then (13.29) holds, provided the conditions of Theorem 13.8

are satisfied for each Up = x/aT + bT’ -o < X < »,

PROOF If (13.29) holds, together with the conditions stated, Theorem
13.9 applies, so that in particular
Pla, (M ~b ) <x} + G(x)

where Mn is the maximum of the independent sequence of associated

variables El’ ceey Zn. It follows at once that their marginal d.f.

F belongs to D(G), and (13.26) is immediate by definition.
Conversely, suppose (13.26) holds for some d.f. F€ D(G), and let

El' 22, ... be an i.i.d. sequence with marginal d.f. F, and suppose

= [ [
that for v, x/an‘fbn,




P{M_<v 1 » G(x) as n » =

Then clearly, for ap % Ao/ bT = b[T/h]’ and up = x/aT + bT’

w(uT) = w(vit/h])

so that Theorem 13.9 applies, giving (13.29}. o

Stationary normal processes

Although we have obtained the asymptotic distributional properties of
the maximum of stationary normal processes directly, it is of interest
to see how these may be obtained as applications of the general theory
of this chapter. This does not lessen the work involved, of course,
since the same calculations in the "direct route" are used to verify
the conditions in the general theory. However the use of the general
theory does also give insight and perspective regarding the principles
involved. We deal here with the more general normal processes considered
in Chapter 12. This will include the {Chapter 7) normal processes with
finite second spectral moments considered in Chapter 7, of course.
The latter processes may also be treated as particular cases of
general processes with finite upcrossings intensities - a class dealt
with later in this chapter.

Suppose then that = (t) is a stationary normal process with zero

mean and covariance function (12.1), viz.,

(13.30) r(z) =1 - Ci{t{* +o(|t|® as 1 -0

where 0 - o < 2. The major result to be obtained is Theorem 12.15,

restated here.

THEOREM 12.15 Let ({f(t)} be a zero-mean stationary normal process,

with covariance function r(t) satisfying (13.30) and
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(13.31) r(t) logt + 0, as t - =,

If u = Up > @ and . = .(u) = Cl/x HauZ/u +(u)/u  (with H,J defined
in Theorem 12.9), and if Tu(uy) » 1, then PIM(T) cu: - " as

T » o,

PROOF FROM THE GENERAL THEORY Write 1w (u) = u{u) so that T,(uT) -~ 1.
Theorem 12.9 shows at once that (13.9) holds (for alil h - 0). Define
qa(u) = au-z/a. and note that (13.10) holds, by (12.21). Hence the re-

sult will follow at once if C(uT), C'(uT) are both shown to hold with
respect to {qa(u)} for ecch a . 0.
It is easily seen in a familiar way that C(uT) holds. For by Lemma

3.2 the left hand side of (13.4) (with qa(u) for gtu), u = uT) does

not exceed

p p ~2/ e e s )
K &z jr(ty-s;)fe J
i=l §=1 J

which is dominated by

2 :
K g I lr(kq) ! e W/ (irka ()

1<kqeT
and this tends to zero for each g} = {qa}, a fixed, by Lemma 12.12.

If we identify this expression with % . then (13.5) holds almost

trivially since %p, T < S,y for any fixed y when AT > v.

C'(uT) follows egually simply by Lemma 3.2 which gives

—ul i q) |
[P{E(0) »u, 2(3Q) ~u} - (L=-6(w)?] < Klr(jq | e ¥ 71+ £
so that
T . R
= L P{£(0) >u, £(jg) >u}
9 he<jqeeT
c1? 2 T -u2/(1 +1r(ig)|)
<=5 (-0 + K= D Ir(jq)| e )q
< 3. . i
g h<jqceT

e o At




The second term tends to zero as T - = again by Lemma 12.12., The
first term is asymptotically equivalent to

eT2 (‘u(u))2 aTZ

= >

2 u2 aZCZ/QHi

by the definitions of g and «(u), and the fact that Ty(u) - -.

Since ETz/aZ » 0 for each fixed a as ¢ - 0, C'(uT) follows. o

Finally, we note that the "double exponential limiting distribution"
for the maximum M(T) (Theorem 12.16) follows exactly as before from

Theorem 12.15,

Processes with finite upcrossing intensities

We show now how some of the conditions required for the general theory
may be simplified when the mean number yf{u) of upcrossings of each
level u per unit time is finite. This includes the particular normal
cases with finite second spectral moments already covered in Chapter 7
and in the preceding section, but of course not the "non-differentiable"
process Wwith o < 2.

We use the notation of Chapter 6 in addition to that of the present
chapter and assume that u = plu) = E(Nu(l)) < » for each value of u.

Writing as in (6.1), for g . O,

(13.32) Jq(u) = P{£(0) cu<£(q))/g

it is clear that

(13.33) Jq(u) < P(Nu(q)g 1}/q < E(Nu(q))/q =
and it follows from Lemma 6.3 that

(13.34) Jq(U) >y as g ~+ 0

for each fixed u.

In the normal case we saw (Lemma 6.6) that Jq(u) ~ ufu) as g+ 0
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in such a way that ug » 0. Here we shall use a variant of this
property assuming as needed that, for each a > 0, there are
constants qa(u) + 0 as u = = such that, with gq_ = qa(u),

w o= uflul),

(13.35) lim inf J_ (u)/u 2 v
u-+> 9

a

where vy, 1l as a + 0. (As indicated below this is readily verified
when £(t) is normal when we may take qa(u) = a/u.)

We shall assume as needed that
{13.36) P{£(0) >u} = o(u(uw)) as u » o,
which clearly holds for the normal case but more generally is readily
verified if, for example for some gq = q(u) - 0 as u +» «

(13.37) Lim sup 21600 2o, bla) 2ul ),

u-+w
since {(13.37) implies that 1lim inf qu(u)/P{E(O) >u} > 0, from which
u—»m
it follows that P{£(0) >u}/Jq(u) + 0, and hence (13.36) holds since
J < .
q(u) < up(u)

We may now recast the conditions (13.8) and (13.9) in terms of the

function p(u), identifying this function with ¢ (u).

LEMMA 13.11 (i) Suppose ,{u) < » for each u and that (13.36) f(or
the sufficient condition (13.37)) holds. Then (13.8} holds with

y(u) = plu).

(ii) If (13.35) holds for some family {qa(u)} then (13.11) holds

with y(u) = ufu).
PROOF Since clearly

P{M(h) >u} < P{N,(h) 21} + P{g(0) >u} < ph + P{£(0) >u},
(13.8) follows at once from (13.36), which proves (i).

Now, if (13.35) holds, then with g = qa(u), p = pu(u),
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P{£(0) <u, £(q) <u, M(g) >u} =

P{E£(0) <u, M(g) >u} - P{E(0) Su<&lq)}

A

P{Nu(q) >1}) =~ qu(u)

< ug - uqva(l +o(l))

so that
lim sup P{£(0) <u, £(q) <u, M(q@) >ul/lqu) <1 - v, ,
-+
which tends to zero as a - 0, giving (13.11). o

In view of this lemma, Gnedenko’s Theorem now applies to processes
of this kind using the more readily verifiable conditions (13.35) and

(13.36), as follows.

THEOREM 13.12 Theorem 13.5 holds for a stationary process {£{t)} with
¢(u) = u(u) < = for each u if the conditions (13.6) and (13.10) are

replaced by (13.35) and (13,36) (or by (13.35) and (13.37)).

PROOF By (i) of the previous lemma the condition (13.36) (or its
sufficient condition (13.37)} implies (13.8) and hence both {13.6) and
(13.7)}. On the other hand (ii) of the lemma shows that (13.35) implies

(13.11) which together with (13.7) implies (13.10) by Lemma 13.3 (iii).o

The condition (13.10) also occurs in Theorem 13.8 and may of course
pe replaced by (13.35) there, since (13.7) is implied by (13.9) which
is assumed in that theorem.

Finally we note that while (13.36) and (13.37) are especially con-
venient to give (13.8) (Lemma 13,11 (i)), the verification of (13.9)

still requires obtaining

lim inf P{M(h) >u}/(hu(u)) > 1 for 0 < h < h,.
u-s

This of course follows for all normal processes considered by Theo-

rem 1..9, with o = 2. There are a number of independent simpler deri-

vations of this when o = 2, one of these being along the lines of the
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"cosine-process" comparison in Chapter 7. The actual comparison used
there gave a slightly weaker result, which was, however, sufficient to

yield the desired limit theory by the particular methods employed.

Poisson convergence of upcrossings

It was shown in Chapter 8 that the upcrossings of one or more high levels
by a normal process 7/ (t) take on a specific Poisson character under
appropriate conditions. It was assumed in particular that the covariance
function r(t) of f£(t) satisfied (7.1) so that the expected number

of upcrossings per unit time, u = E(Nu(l)), is finite.

Corresponding results are obtainable for t¢-upcrossings by normal
processes when r(t) satisfies (12.1) with a < 2 and indeed the proof
is indicated in Chapter 12 for the single level result (Theorem 12.18).

For general stationary processes the same results may be proved

under conditions used in this present chapter, including ¢, C'.

Again when u E(Nu(l)) < » the results apply to actual upcrossings
while if , = = they apply to <-upcrossings. We shall state and brief-
ly indicate the proof of tihe specific theorem for a single level in
the case when u < =,

As in previous discussions, we consider a time period T and a level

U both increasing in such a way that Tu =+ 1 > Of{u =u(uT)), and define

a normalized point process of upcrossings by

N,}.(B) = NUT(TB), (N.;(t) = NuT(tT))

for each interval (or more general Borel set) B, so that, in particular,

E(N%(l)) = E(NUT(t)) = uT + 7.

This shows that the "intensity" (i.e. mean number of events per unit
time) of the normalized upcrossing point process converges to T. Our

task is to show that the upcrossing point process actually converges
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in distribution to a Poisson process with mean 7.
The derivation of this result is based on the following two exten-
sions of Theorem 13.8 which are proved by similar arguments to those

used in obtaining Theorem 13.8 and in Chapter 8.

THEOREM 13.13 Under the conditions of Theorem 13.8, if 0 < 8 < 1 and
uT » 1, then

(13.38) P(M(OT) <ugl » e ' as T + =

THEQOREM 13.14 If 1I .,Ir are disjoint subintervals of [0,1]

1’ 12, .
and I; = TIj = {t; t/T €Ij} then under the conditions of Theorem 13.8
if uT - 1,

r r
(13.39) P(~n {M(I;) guT}) - o

P{M(I%) <u,} » O,
3=1 S

sc that by Theorem 13.13

-1 L 8.
J

r 3j=1
{13.40) p( n {M(12) 5uT}) +e 747,

j=1

where Gj is the length of Ij' 1 <3 <r.

It is now a relatively straightforward matter to show that the point
processes N% converge (in the full sense of weak convergence) to a

Poisson process N with intensity r.

THEOREM 13.15 Under the conditions of Theorem 13.8 if T. + - where
M= u(uT), then the family N; of normalized point processes of up-

crossings of up on the unit interval converges in distribution to a

Poisson process N with intensity Tt on that interval as T + =,
PROOF Again by Theorem A.l1 it is sufficient to prove that
(1) E(Nz{(a,b}l}) ~ E(N{(a,b])}) = 1(b-a) as T + = for all a,b,

0 ¢ac<bc<l,




-137-

(ii) P{N;(B) =0; -~ P{N(B) =0: as T - «» for all sets B of the
r
form U Bj where r 1is any integer and Bj are disjoint in-
1
tervals (aj,bj] < (0,11.

Now (i) follows trivially since
E(N%{(a,b]}) = yT(b-a) + t(b-a).

To obtain (ii) we note that

* = 1 -
0 < P{N3(B) =0} - P{M(TB) <ug!
= P{N_ (TB) = 0, M(TB) > u,}
r
< i P{g(Ta,) >ugl
j=1 T
r
since if the maximum in TB = U (Ta., Tbj] exceeds U but there are
i=1
no upcrossings of u; in these intervals, then £(t) must exceed up at

the initial point of at least one such interval. But the last expression

is just rP{£(0) >uT} - Q0 as T =+ =, Hence

P{NX(B) =0} - P{M(TB) cu,} - O.
r -ri(b.-aj)
But P{M(TB) <u,} = P{ n (M(TB,) <u_} » e 3 by Theorem 13.14
=T j=1 3ot -1Z(b.-a.)
so that (ii) follows since P{N(B) =0} = e 33 a

COROLLARY 13.16 If B, are disjoint (Borel) subsets of the unit inter-

Pl

val and if the boundary of each B. has zero Lebesque measure then

Ty
-rm(Bj) [Tm(Bj)]

r.!

P(N*(B.) =r
T3 1 j

r

., l<j<n} > I e

] - - P,
‘J_

where m(Bj) denotes the Lebesgue measure of B..

PROOF This is an immediate consequence of the full distributional

convergence proved (cf. Appendix). o

The above results concern convergence of the point processes of up-
crossings of uj, in the unit interval to a Poisson process in the unit

interval. A slight modification, requiring C and C' to hold for all
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families Ugp in place of U for all # » (0, enables a corresponding

result to be shown for the upcrossings on the whole positive real iine,

but we do not pursue this here. Instead we show how Theorem 13.15 yields

the asymptotic distribution of the r-th largest local maximum in (0,T).
Suppose, then, that ~7(t) has a continuous derivative a.s. and (cf.

Chapters 6 and 9) define N&(T) to be the number of local maxima in

the interval (0,T) for which the process value exceeds u, i.e. the

number of downcrossing points t of zero by £¢' in (0,T) such that

£(t) > u. Clearly N&(T) > NU(T) - 1 since at least one local maximum

occurs between two upcrossings. It is also reasonable to expect that

if the sample function behaviour is not too irregular, there will

tend to be just one local maximum above u between most successive up-

crossings of u when u is large, so that N&(T) and NU(T) will

tend to be approximately equal. The following result makes this precise.

THEOREM 13.17 With the above notation let (uT} be constants such
that P{£{(0) > uT} + 0, and that Tu(= Tulug)) » 1 >0 as T + =,
Suppose that E(N&(ll) is finite for each wu and that E(N&ll)) ~ ufu)
as u »> =. Then, writing ug = u, E(IN&(T)-NU(T)§) + 0. If also the
conditions of Theorem 13,15 hold (so that P{NU(T) =r} + e Tt/ it

follows that Pfﬁ&(T) =r} » e "t/rt,

PROOF As noted above, N/ (T} > N (T) - 1, and it is clear, moreover,

that if N&(T) = Nu(T) - 1, then £ (T) - u. Hence

E(INJ(T) =N (T)[) = E(NJ(T) =N (T)) + 2P{N/(T) =N (T) - 1}

< TE(N/ (1)) = uT + 2P{£(T) > u},
which tends to zero as T » » since P{f(T) >Uupt = P{£(0) >uny 0
and TE(N& 1)) - uT = uTl{(l +o(1)) -1] + 0, so that the first part of
T

the theorem follows. The second part now follows immediately since the
integer-valued r.v. N&(T) - Nu(T) tends to zero in probability, giv-
ing P{N&(T) * Nu(T)) - 0 and hence P{N&(T) =r} - P{Nu(T) =r} » 0

for each r. a
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Now write M‘r’(T) for the r-th largest local maximum in the inter-

val (0,T). Since the events ’M(r)(T)"u', N

< 3Ty ~r: are identical

we obtain the following corollary.

COROLLARY 13.18 Under the conditions of the theorem

r—
P{M(r)(T) cupi -~ e ! I o<°/s! . o

As a further corollary we obtain the limiting distribution of

M(r)(T) in terms of that for M(T).

COROLLARY 13.19 Suppose that P{aT(M(T) —bT) ¢<x} - G(x) and that the
conditions of Theorem 13.8 hold with Up = x/aT + bT for each real «x
tand ¢ = u). Suppose also that E(N/(1)) ~ E(N (1)) as u » =. Then
1

P logG(x,]S/s!
=0

r
(13.41) Pra T (1) ~by) <x! -+ Glx)
S

where G(x) > 0 (and zero if G(x) = 0).

PROOF This follows from Corollary 13.18 by writing G(x) e ! since

Theorem 13.8 implies that T, - 1. o

Note that, by Lemma 9.4(i), for a stationary rormal process with
finite second and fourth spectral moments E(N&(l)) ~ u so that
Theorem 13.17 and its corollaries apply.

The relation (13.41) gives the asymptotic distribution of the r-th

largest local maximum M(r)

(T) as a corollary of Theorem 13.17. Further
it is clearly possible to generalize Theorem 13.17 to give "full Poisson
convergence" for the point process of local maxima of height above u
and indeed to generalize Theorem 9.5 and obtain joint distributions of

heights and positions of local maxima in this general situation.




Interpretation of the function . (u)

The function +(u) used throughout this chapter describes the tail of
the distribution of the maximum M{(h) in a fixed interval h, in the

sense of (13.9), viz.,

P M(h) >u- ~ hyfu) for 0 < h - ho.
Wwe have seen how . may be calculated for particular cases — as
¢(u) = L(u) for processes with a finite upcrossing intensity uf{u)

and as ,(u) = K@(u)u(z/’l)-l

for normal processes satisfying (12.1).
Berman (1979) has recently considered another general method for ob-
taining + ({(or at least many of its properties) based on the asymptot-
ic distribution of the amount of time spent above a high level.
Specifically Berman considers the time Lt(u) which a stationary
process spends above the level u in the interval (0,t) and proves

the basic result

P{th(u) > x}

lim ——F——— =+ =T'(x),
oo E(th(u))
at all continuity points x > 0 of T' {under given conditions).

Here v = v({(u) 1is a certain function of u and T(x) 1is an abso-
lutely continuous non-increasing function with Radon-Nikodym derivative
', and t is fixed.

While this result does not initially apply at x = 0, it is extended
to so apply giving, since the events ({M(t) > u}, {Lt(u)> 0} are equiva-

lent,
PiM(t) >u} ~ -T'(0) E(th(u))
= =T'"(0) vt(l -F(u)),

where F is the marginal d.f. of the process, since it is very easily
shown that E(Lt(u)) = t(l -F(u)). Hence we may — under the stated condi-

tion — obtain ¢ as

e o s & = e -
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wi{u) = =" (0) v(u) (1l -F(u)).

It is required in this approach that F have such a form that it
belongs to the domain of attraction of the Type I extreme value distri-
bution and it follows (though not immediately) that M(h}) has a Type I
limit so that (e.g. from the theory of this chapter) a limiting distri-
bution for M(T) as T » = must (under appropriate condition) also be
of Type I. However a number of important cases are covered in this ap-
proach including stationary normal processes, certain Markov Processes,
and so-called xz-processes. Further the approach gives considerable in-

sight into the central ideas governing extremal properties.

e b g - W"‘--'
A SRR ey
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